
If we have an expression as \[\alpha ={}^{m}{{C}_{2}}\], then \[{}^{\alpha }{{C}_{2}}\] is equal to: -
(a) \[{}^{m+1}{{C}_{4}}\]
(b) \[{}^{m-1}{{C}_{4}}\]
(c) \[3.{}^{m+2}{{C}_{4}}\]
(d) \[3.{}^{m+1}{{C}_{4}}\]
Answer
147.3k+ views
Hint: Find the value of \[\alpha \] in terms of m by expanding the relation \[\alpha ={}^{m}{{C}_{2}}\], using the formula given as: - \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Now, expand the relation: - \[{}^{\alpha }{{C}_{2}}\] by using the same formula and substitute the value of \[\alpha \] found in terms of m earlier. Simplify the expression to get the answer.
Complete step-by-step solution
Here, we have been provided with the relation \[\alpha ={}^{m}{{C}_{2}}\] and then find the value of \[{}^{\alpha }{{C}_{2}}\].
Now, we know that \[{}^{n}{{C}_{r}}\] is expanded by the formula: - \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], so applying this formula, we get,
\[\begin{align}
& \Rightarrow \alpha ={}^{m}{{C}_{2}} \\
& \Rightarrow \alpha =\dfrac{m!}{2!\left( m-2 \right)!} \\
\end{align}\]
Now, m! can be written as \[m!=m\times \left( m-1 \right)\times \left( m-2 \right)!\], so we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)\left( m-2 \right)!}{2!\left( m-2 \right)!}\]
Cancelling \[\left( m-2 \right)!\], we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2!}\]
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2}\left( \because 2!=2\times 1=2 \right)\] - (1)
Now, applying the same formula to expand \[{}^{\alpha }{{C}_{2}}\], we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha !}{2!\left( \alpha -2 \right)!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha \left( \alpha -1 \right)}{2} \\
\end{align}\]
Substituting the value of \[\alpha \] from equation (1) in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\dfrac{m\left( m-1 \right)}{2}\left( \dfrac{m\left( m-1 \right)}{2}-1 \right)}{2} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-1 \right)-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-m-2 \right)}{8} \\
\end{align}\]
Now, splitting the middle term of the expression \[{{m}^{2}}-m-2\] in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-2m+m-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-2 \right)+1\left( m-2 \right) \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m+1 \right)\left( m-2 \right)}{8} \\
\end{align}\]
The numerator in the above relation can be arranged as: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)}{8}\]
Now, multiplying both the numerator and denominator of the above expression with (m – 3) (m – 4) (m – 5)…….. 3 . 2 . 1, we get,
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)\left( m-3 \right)......3.2.1}{8\times \left( m-3 \right)\left( m-4 \right)\left( m-5 \right)......3.2.1}\]
Now, we have the numerator as the multiplication of terms starting from (m + 1) and ending at 1 and the denominator as the multiplication of terms starting from (m – 3) and ending at 1, so they can be written as factorial like: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\]
Now, multiplying the numerator and the denominator with 4!, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\times \dfrac{4!}{4!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times \dfrac{\left( m+1 \right)!}{4!\times \left( m-3 \right)!} \\
\end{align}\]
This can be written as: -
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4\times 3\times 2\times 1}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=3.{}^{m+1}{{C}_{4}} \\
\end{align}\]
Hence, option (d) is the correct answer.
Note: You must remember the expansion formula of the combination expression \[{}^{n}{{C}_{r}}\] to solve the above question. Note that we must arrange the terms properly so that a particular arrangement can be formed and the expression can be written as the factorial of different terms. You may note that we can easily get the correct option by substituting m = 5 in the expression and the options. But this process can only be applied if the options are present just like in the above question.
Complete step-by-step solution
Here, we have been provided with the relation \[\alpha ={}^{m}{{C}_{2}}\] and then find the value of \[{}^{\alpha }{{C}_{2}}\].
Now, we know that \[{}^{n}{{C}_{r}}\] is expanded by the formula: - \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], so applying this formula, we get,
\[\begin{align}
& \Rightarrow \alpha ={}^{m}{{C}_{2}} \\
& \Rightarrow \alpha =\dfrac{m!}{2!\left( m-2 \right)!} \\
\end{align}\]
Now, m! can be written as \[m!=m\times \left( m-1 \right)\times \left( m-2 \right)!\], so we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)\left( m-2 \right)!}{2!\left( m-2 \right)!}\]
Cancelling \[\left( m-2 \right)!\], we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2!}\]
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2}\left( \because 2!=2\times 1=2 \right)\] - (1)
Now, applying the same formula to expand \[{}^{\alpha }{{C}_{2}}\], we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha !}{2!\left( \alpha -2 \right)!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha \left( \alpha -1 \right)}{2} \\
\end{align}\]
Substituting the value of \[\alpha \] from equation (1) in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\dfrac{m\left( m-1 \right)}{2}\left( \dfrac{m\left( m-1 \right)}{2}-1 \right)}{2} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-1 \right)-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-m-2 \right)}{8} \\
\end{align}\]
Now, splitting the middle term of the expression \[{{m}^{2}}-m-2\] in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-2m+m-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-2 \right)+1\left( m-2 \right) \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m+1 \right)\left( m-2 \right)}{8} \\
\end{align}\]
The numerator in the above relation can be arranged as: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)}{8}\]
Now, multiplying both the numerator and denominator of the above expression with (m – 3) (m – 4) (m – 5)…….. 3 . 2 . 1, we get,
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)\left( m-3 \right)......3.2.1}{8\times \left( m-3 \right)\left( m-4 \right)\left( m-5 \right)......3.2.1}\]
Now, we have the numerator as the multiplication of terms starting from (m + 1) and ending at 1 and the denominator as the multiplication of terms starting from (m – 3) and ending at 1, so they can be written as factorial like: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\]
Now, multiplying the numerator and the denominator with 4!, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\times \dfrac{4!}{4!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times \dfrac{\left( m+1 \right)!}{4!\times \left( m-3 \right)!} \\
\end{align}\]
This can be written as: -
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4\times 3\times 2\times 1}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=3.{}^{m+1}{{C}_{4}} \\
\end{align}\]
Hence, option (d) is the correct answer.
Note: You must remember the expansion formula of the combination expression \[{}^{n}{{C}_{r}}\] to solve the above question. Note that we must arrange the terms properly so that a particular arrangement can be formed and the expression can be written as the factorial of different terms. You may note that we can easily get the correct option by substituting m = 5 in the expression and the options. But this process can only be applied if the options are present just like in the above question.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Electrical Field of Charged Spherical Shell - JEE
