
If the vertices of a triangle area unit (2, −2), (−1, −1), and (5,2) then the equation of its circumcircle is?
A) \[\begin{array}{*{20}{c}}
{{x^2} + {y^2} + 3x + 3y + 8}& = &0
\end{array}\]
B) \[\begin{array}{*{20}{c}}
{{x^2} + {y^2} - 3x - 3y - 8}& = &0
\end{array}\]
C) \[\begin{array}{*{20}{c}}
{{x^2} + {y^2} - 3x + 3y + 8}& = &0
\end{array}\]
D) None of these
Answer
162.9k+ views
Hint: First determine the center of the circumcircle and then find the radius of the circumcircle. After getting all these values, apply the equation of the circle.
Formula Used: \[\begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Complete step by step solution: In this problem, we have given that the vertices of the triangle are (2, −2), (−1, −1), and (5,2) respectively.
Let us assume that the center of the circumcircle is O \[\left( {{x_0},{y_0}} \right)\]and the radius of the circumcircle is R. Now, we will draw a figure according to the given data. Therefore,

Figure 1
Now according to the figure that we have drawn,
\[ \Rightarrow OA = OB = OC = R\]
To determine the center of the circumcircle, we will write,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{OB}
\end{array}\] ………. (1)
And we know that the formula of the length of the line is,
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Therefore, The length of the OA,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }
\end{array}\]
And OB will be,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OB}& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Now from equation (1). We will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Square both sides, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 3{x_0} - {y_0}}& = &3
\end{array}\] …………. (A).
Similarly,
For OA and OC, so we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{OC}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}} }
\end{array}\]
Square both sides we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 6{x_1} + 8{y_1}}& = &{21}
\end{array}\] ……….. (B)
Now from the equation (A) and (B). we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_0}}& = &{\dfrac{3}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_0}}& = &{\dfrac{3}{2}}
\end{array}\]
Therefore, the coordinates of the center of the circumcircle are \[\left( {\dfrac{3}{2},\dfrac{3}{2}} \right)\]
Now we will determine the radius of the circumcircle. According to the figure we have,
\[ \Rightarrow OA = OB = OC = R\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\sqrt {{{\left( {\dfrac{3}{2} - 2} \right)}^2} + {{\left( {\dfrac{3}{2} + 2} \right)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\dfrac{5}{{\sqrt 2 }}}
\end{array}\]
Now apply the general equation of the circle, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - {x_0}} \right)}^2} + {{\left( {y - {y_0}} \right)}^2}}& = &{{R^2}}
\end{array}\]
Now put the values,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - \dfrac{3}{2}} \right)}^2} + {{\left( {y - \dfrac{3}{2}} \right)}^2}}& = &{{{\left( {\dfrac{5}{{\sqrt 2 }}} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 3x - 3y - 8}& = &0
\end{array}\]
So, Option ‘B’ is correct
Note: It is important to note that the length of the lines OA, OB and OC will be equal (radii of the circle).
Formula Used: \[\begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Complete step by step solution: In this problem, we have given that the vertices of the triangle are (2, −2), (−1, −1), and (5,2) respectively.
Let us assume that the center of the circumcircle is O \[\left( {{x_0},{y_0}} \right)\]and the radius of the circumcircle is R. Now, we will draw a figure according to the given data. Therefore,

Figure 1
Now according to the figure that we have drawn,
\[ \Rightarrow OA = OB = OC = R\]
To determine the center of the circumcircle, we will write,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{OB}
\end{array}\] ………. (1)
And we know that the formula of the length of the line is,
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Therefore, The length of the OA,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }
\end{array}\]
And OB will be,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OB}& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Now from equation (1). We will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Square both sides, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 3{x_0} - {y_0}}& = &3
\end{array}\] …………. (A).
Similarly,
For OA and OC, so we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{OC}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}} }
\end{array}\]
Square both sides we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 6{x_1} + 8{y_1}}& = &{21}
\end{array}\] ……….. (B)
Now from the equation (A) and (B). we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_0}}& = &{\dfrac{3}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_0}}& = &{\dfrac{3}{2}}
\end{array}\]
Therefore, the coordinates of the center of the circumcircle are \[\left( {\dfrac{3}{2},\dfrac{3}{2}} \right)\]
Now we will determine the radius of the circumcircle. According to the figure we have,
\[ \Rightarrow OA = OB = OC = R\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\sqrt {{{\left( {\dfrac{3}{2} - 2} \right)}^2} + {{\left( {\dfrac{3}{2} + 2} \right)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\dfrac{5}{{\sqrt 2 }}}
\end{array}\]
Now apply the general equation of the circle, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - {x_0}} \right)}^2} + {{\left( {y - {y_0}} \right)}^2}}& = &{{R^2}}
\end{array}\]
Now put the values,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - \dfrac{3}{2}} \right)}^2} + {{\left( {y - \dfrac{3}{2}} \right)}^2}}& = &{{{\left( {\dfrac{5}{{\sqrt 2 }}} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 3x - 3y - 8}& = &0
\end{array}\]
So, Option ‘B’ is correct
Note: It is important to note that the length of the lines OA, OB and OC will be equal (radii of the circle).
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
