
If the vertices of a triangle area unit (2, −2), (−1, −1), and (5,2) then the equation of its circumcircle is?
A) \[\begin{array}{*{20}{c}}
{{x^2} + {y^2} + 3x + 3y + 8}& = &0
\end{array}\]
B) \[\begin{array}{*{20}{c}}
{{x^2} + {y^2} - 3x - 3y - 8}& = &0
\end{array}\]
C) \[\begin{array}{*{20}{c}}
{{x^2} + {y^2} - 3x + 3y + 8}& = &0
\end{array}\]
D) None of these
Answer
216k+ views
Hint: First determine the center of the circumcircle and then find the radius of the circumcircle. After getting all these values, apply the equation of the circle.
Formula Used: \[\begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Complete step by step solution: In this problem, we have given that the vertices of the triangle are (2, −2), (−1, −1), and (5,2) respectively.
Let us assume that the center of the circumcircle is O \[\left( {{x_0},{y_0}} \right)\]and the radius of the circumcircle is R. Now, we will draw a figure according to the given data. Therefore,

Figure 1
Now according to the figure that we have drawn,
\[ \Rightarrow OA = OB = OC = R\]
To determine the center of the circumcircle, we will write,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{OB}
\end{array}\] ………. (1)
And we know that the formula of the length of the line is,
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Therefore, The length of the OA,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }
\end{array}\]
And OB will be,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OB}& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Now from equation (1). We will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Square both sides, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 3{x_0} - {y_0}}& = &3
\end{array}\] …………. (A).
Similarly,
For OA and OC, so we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{OC}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}} }
\end{array}\]
Square both sides we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 6{x_1} + 8{y_1}}& = &{21}
\end{array}\] ……….. (B)
Now from the equation (A) and (B). we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_0}}& = &{\dfrac{3}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_0}}& = &{\dfrac{3}{2}}
\end{array}\]
Therefore, the coordinates of the center of the circumcircle are \[\left( {\dfrac{3}{2},\dfrac{3}{2}} \right)\]
Now we will determine the radius of the circumcircle. According to the figure we have,
\[ \Rightarrow OA = OB = OC = R\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\sqrt {{{\left( {\dfrac{3}{2} - 2} \right)}^2} + {{\left( {\dfrac{3}{2} + 2} \right)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\dfrac{5}{{\sqrt 2 }}}
\end{array}\]
Now apply the general equation of the circle, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - {x_0}} \right)}^2} + {{\left( {y - {y_0}} \right)}^2}}& = &{{R^2}}
\end{array}\]
Now put the values,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - \dfrac{3}{2}} \right)}^2} + {{\left( {y - \dfrac{3}{2}} \right)}^2}}& = &{{{\left( {\dfrac{5}{{\sqrt 2 }}} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 3x - 3y - 8}& = &0
\end{array}\]
So, Option ‘B’ is correct
Note: It is important to note that the length of the lines OA, OB and OC will be equal (radii of the circle).
Formula Used: \[\begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Complete step by step solution: In this problem, we have given that the vertices of the triangle are (2, −2), (−1, −1), and (5,2) respectively.
Let us assume that the center of the circumcircle is O \[\left( {{x_0},{y_0}} \right)\]and the radius of the circumcircle is R. Now, we will draw a figure according to the given data. Therefore,

Figure 1
Now according to the figure that we have drawn,
\[ \Rightarrow OA = OB = OC = R\]
To determine the center of the circumcircle, we will write,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{OB}
\end{array}\] ………. (1)
And we know that the formula of the length of the line is,
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &{\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }
\end{array}\]
Therefore, The length of the OA,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OA}& = &{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }
\end{array}\]
And OB will be,
\[ \Rightarrow \begin{array}{*{20}{c}}
{OB}& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Now from equation (1). We will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{\sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}} }
\end{array}\]
Square both sides, we will get
\[ \Rightarrow \begin{array}{*{20}{c}}
{{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} + 1} \right)}^2} + {{\left( {{y_0} + 1} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 3{x_0} - {y_0}}& = &3
\end{array}\] …………. (A).
Similarly,
For OA and OC, so we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{OC}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \sqrt {{{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}} }& = &{\sqrt {{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}} }
\end{array}\]
Square both sides we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {{x_0} - 2} \right)}^2} + {{\left( {{y_0} + 2} \right)}^2}}& = &{{{\left( {{x_0} - 5} \right)}^2} + {{\left( {{y_0} - 2} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 6{x_1} + 8{y_1}}& = &{21}
\end{array}\] ……….. (B)
Now from the equation (A) and (B). we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_0}}& = &{\dfrac{3}{2}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_0}}& = &{\dfrac{3}{2}}
\end{array}\]
Therefore, the coordinates of the center of the circumcircle are \[\left( {\dfrac{3}{2},\dfrac{3}{2}} \right)\]
Now we will determine the radius of the circumcircle. According to the figure we have,
\[ \Rightarrow OA = OB = OC = R\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\sqrt {{{\left( {\dfrac{3}{2} - 2} \right)}^2} + {{\left( {\dfrac{3}{2} + 2} \right)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow OA}& = &{\dfrac{5}{{\sqrt 2 }}}
\end{array}\]
Now apply the general equation of the circle, we will get
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - {x_0}} \right)}^2} + {{\left( {y - {y_0}} \right)}^2}}& = &{{R^2}}
\end{array}\]
Now put the values,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {x - \dfrac{3}{2}} \right)}^2} + {{\left( {y - \dfrac{3}{2}} \right)}^2}}& = &{{{\left( {\dfrac{5}{{\sqrt 2 }}} \right)}^2}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x^2} + {y^2} - 3x - 3y - 8}& = &0
\end{array}\]
So, Option ‘B’ is correct
Note: It is important to note that the length of the lines OA, OB and OC will be equal (radii of the circle).
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

