
If the velocity (V), force (F), and time (T) are chosen as fundamental quantities, Express :
a) Mass
b) Energy, in terms of V, F, and T.
Answer
139.5k+ views
Hint: Write the dimensional formula of velocity (V), force (F), and time (T), then express the required quantity in new fundamental quantities with assumed powers and compare the dimensional powers of both of them to calculate the value of assumed coefficients.
Complete step by step solution:
(a) We know that dimensions of velocity (V), force (F), and time (T) are $\left[ {{M^0}{L^1}{T^{^{ - 1}}}} \right],\left[ {{M^1}{L^1}{T^{ - 2}}} \right],\left[ {{T^1}} \right]$ respectively. Assume
$Mass = (constant)\left[ {{F^b}{V^a}{T^c}} \right]$
Now by equating the dimensions we get:-
$\left[ {{M^1}} \right] = {\left[ {{M^0}{L^1}{T^{ - 1}}} \right]^a}{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$ \Rightarrow \left[ {{M^1}} \right] = {\left[ {{M^b}{L^{a + b}}{T^{c - 2b - a}}} \right]^{}}$
So by equating the powers we get
$b = 1$ --(i)
$a + b = 0$ --(ii)
$c - a - 2b = 0$ --(iii)
Now by substituting the value of b in equation (i) we get
$
a + 1 = 0 \\
\Rightarrow a = - 1 \\
$
Now by substituting the values of a and b in equation (iii)
$
c + 1 - 2 = 0 \\
\Rightarrow c = 1 \\
$
Hence, We can write dimensions of mass as $Mass = (constant)\left[ {{V^{ - 1}}{F^1}{T^1}} \right]$
(b)Now we will write the energy in terms of velocity(V), force(F), and time(T). We know that the dimensions of energy are$\left[ {M{L^2}{T^{ - 2}}} \right]$.
Assume
$Energy = (constant)[{V^a}{F^b}{T^c}]$
Now by equating the dimensions we get
$\left[ {M{L^2}{T^{ - 2}}} \right] = {\left[ {{M^0}{L^1}{T^{ - 1}}} \right]^a}{\left[ {ML{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$ \Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = \left[ {{M^b}{L^{a + b}}{T^{c - 2b - a}}} \right]$
Now by equating the powers of the mentioned quantities. We will get
$b = 1$ --(i)
$a + b = 2$ ---(ii)
$c - 2b - a = - 2$ ---(iii)
So, by putting the value of b in equation (ii) we will get
$a = 1$
Similarly, by putting the value of a and b in equation (iii) we will get
$
c - 2 - 1 = - 2 \\
\Rightarrow c = 1 \\
$
Hence, We can write dimensions of energy as $Energy = (constant)[{V^1}{F^{^1}}{T^1}]$
Note: When solving for assumed coefficients, first solve the equation which has only one variable involved then solve the subsequent equations by substituting the values of already found variables, this minimizes the chances of error in calculation.
Complete step by step solution:
(a) We know that dimensions of velocity (V), force (F), and time (T) are $\left[ {{M^0}{L^1}{T^{^{ - 1}}}} \right],\left[ {{M^1}{L^1}{T^{ - 2}}} \right],\left[ {{T^1}} \right]$ respectively. Assume
$Mass = (constant)\left[ {{F^b}{V^a}{T^c}} \right]$
Now by equating the dimensions we get:-
$\left[ {{M^1}} \right] = {\left[ {{M^0}{L^1}{T^{ - 1}}} \right]^a}{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$ \Rightarrow \left[ {{M^1}} \right] = {\left[ {{M^b}{L^{a + b}}{T^{c - 2b - a}}} \right]^{}}$
So by equating the powers we get
$b = 1$ --(i)
$a + b = 0$ --(ii)
$c - a - 2b = 0$ --(iii)
Now by substituting the value of b in equation (i) we get
$
a + 1 = 0 \\
\Rightarrow a = - 1 \\
$
Now by substituting the values of a and b in equation (iii)
$
c + 1 - 2 = 0 \\
\Rightarrow c = 1 \\
$
Hence, We can write dimensions of mass as $Mass = (constant)\left[ {{V^{ - 1}}{F^1}{T^1}} \right]$
(b)Now we will write the energy in terms of velocity(V), force(F), and time(T). We know that the dimensions of energy are$\left[ {M{L^2}{T^{ - 2}}} \right]$.
Assume
$Energy = (constant)[{V^a}{F^b}{T^c}]$
Now by equating the dimensions we get
$\left[ {M{L^2}{T^{ - 2}}} \right] = {\left[ {{M^0}{L^1}{T^{ - 1}}} \right]^a}{\left[ {ML{T^{ - 2}}} \right]^b}{\left[ T \right]^c}$
$ \Rightarrow \left[ {M{L^2}{T^{ - 2}}} \right] = \left[ {{M^b}{L^{a + b}}{T^{c - 2b - a}}} \right]$
Now by equating the powers of the mentioned quantities. We will get
$b = 1$ --(i)
$a + b = 2$ ---(ii)
$c - 2b - a = - 2$ ---(iii)
So, by putting the value of b in equation (ii) we will get
$a = 1$
Similarly, by putting the value of a and b in equation (iii) we will get
$
c - 2 - 1 = - 2 \\
\Rightarrow c = 1 \\
$
Hence, We can write dimensions of energy as $Energy = (constant)[{V^1}{F^{^1}}{T^1}]$
Note: When solving for assumed coefficients, first solve the equation which has only one variable involved then solve the subsequent equations by substituting the values of already found variables, this minimizes the chances of error in calculation.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
