
If the roots of the equation ${x^2} - 2ax + {a^2} + a - 3 = 0$ are real and less than 3, then
A. $a < 2$
B. $2 \leqslant a \leqslant 3$
C. $3 < a \leqslant 4$
D. $a > 4$
Answer
163.8k+ views
Hint: Check the concavity of the given quadratic equation and using this information check whether $f(3)$ is positive or negative. Also use the fact that the discriminant must be greater than or equal to 0 as real roots exist. With the two inequalities, find the range of a.
Formula used: Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$
Complete step-by-step solution:
Let $f(x) = {x^2} - 2ax + {a^2} + a - 3$
The coefficient of ${x^2}$ in the equation ${x^2} - 2ax + {a^2} + a - 3 = 0$ is greater than 0. Therefore, it is a concave upwards graph. Since it is a concave upwards graph, $f(x)$ will be negative only when $x \in \left[ {p,q} \right]$ where $p,q$ are the roots.

Therefore, $f(3)$ is positive. We also know that real roots exist. Therefore, the discriminant of the quadratic equation, ${x^2} - 2ax + {a^2} + a - 3 = 0$ must also be greater than or equal to 0.
Since $f(3) > 0$,
${3^2} - 2a(3) + {a^2} + a - 3 > 0$
$9 - 6a + {a^2} + a - 3 > 0$
${a^2} - 5a + 6 > 0$
Solving further we get,
${a^2} - 2a - 3a + 6 > 0$
$a\left( {a - 2} \right) - 3\left( {a - 2} \right) > 0$
$\left( {a - 2} \right)\left( {a - 3} \right) > 0$
$a \in \left( { - \infty ,2} \right) \cup \left( {3,\infty } \right)$
Since discriminant, $D \geqslant 0$,
${\left( { - 2a} \right)^2} - 4\left( 1 \right)\left( {{a^2} + a - 3} \right) \geqslant 0$
$4{a^2} - 4{a^2} - 4a + 12 \geqslant 0$
Simplifying the above inequality,
$4a \leqslant 12$
$a \leqslant 3$
$a \in ( - \infty ,3]$
Taking the intersection of $\left( { - \infty ,2} \right) \cup \left( {3,\infty } \right)$ and $( - \infty ,3]$, we get $a \in \left( { - \infty ,2} \right)$.
Therefore, the correct answer is option A. $a < 2$.
Note: Given a quadratic polynomial $a{x^2} + bx + c$, if $a > 0$ then the graph of the quadratic polynomial will be a concave upwards graph and if $a < 0$ then the graph of the quadratic polynomial will be a concave downwards graph.
Formula used: Discriminant of the standard quadratic equation $a{x^2} + bx + c = 0$ is ${b^2} - 4ac$
Complete step-by-step solution:
Let $f(x) = {x^2} - 2ax + {a^2} + a - 3$
The coefficient of ${x^2}$ in the equation ${x^2} - 2ax + {a^2} + a - 3 = 0$ is greater than 0. Therefore, it is a concave upwards graph. Since it is a concave upwards graph, $f(x)$ will be negative only when $x \in \left[ {p,q} \right]$ where $p,q$ are the roots.

Therefore, $f(3)$ is positive. We also know that real roots exist. Therefore, the discriminant of the quadratic equation, ${x^2} - 2ax + {a^2} + a - 3 = 0$ must also be greater than or equal to 0.
Since $f(3) > 0$,
${3^2} - 2a(3) + {a^2} + a - 3 > 0$
$9 - 6a + {a^2} + a - 3 > 0$
${a^2} - 5a + 6 > 0$
Solving further we get,
${a^2} - 2a - 3a + 6 > 0$
$a\left( {a - 2} \right) - 3\left( {a - 2} \right) > 0$
$\left( {a - 2} \right)\left( {a - 3} \right) > 0$
$a \in \left( { - \infty ,2} \right) \cup \left( {3,\infty } \right)$
Since discriminant, $D \geqslant 0$,
${\left( { - 2a} \right)^2} - 4\left( 1 \right)\left( {{a^2} + a - 3} \right) \geqslant 0$
$4{a^2} - 4{a^2} - 4a + 12 \geqslant 0$
Simplifying the above inequality,
$4a \leqslant 12$
$a \leqslant 3$
$a \in ( - \infty ,3]$
Taking the intersection of $\left( { - \infty ,2} \right) \cup \left( {3,\infty } \right)$ and $( - \infty ,3]$, we get $a \in \left( { - \infty ,2} \right)$.
Therefore, the correct answer is option A. $a < 2$.
Note: Given a quadratic polynomial $a{x^2} + bx + c$, if $a > 0$ then the graph of the quadratic polynomial will be a concave upwards graph and if $a < 0$ then the graph of the quadratic polynomial will be a concave downwards graph.
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
