
If the roots of the equation $a{x^2} + bx + c = 0$ be $\alpha $ and $\beta $ then the roots of the equation $c{x^2} + bx + a = 0$ are:
A. $ - \alpha , - \beta $
B. $\alpha ,\dfrac{1}{\beta }$
C. $\dfrac{1}{\alpha },\dfrac{1}{\beta }$
D. None of these
Answer
218.4k+ views
Hint: First we will find the sum and product of roots of equation $a{x^2} + bx + c = 0$. Then divide sum by product of roots. After simplification, we will compare the sum and product of the roots of equation $c{x^2} + bx + a = 0$ to find the roots of the equation.
Formula Used: If the quadratic equation is $a{x^2} + bx + c = 0$. Then,
Sum of the roots $ = \dfrac{{ - b}}{a}$
Product of roots $ = \dfrac{c}{a}$
Complete step by step solution: Given, the roots of the equation $a{x^2} + bx + c = 0$ are $\alpha $ and $\beta $.
Sum of the roots $ = \dfrac{{ - b}}{a}$
$\alpha + \beta = \dfrac{{ - b}}{a}$ …(1)
Product of roots $ = \dfrac{c}{a}$
\[\alpha \beta = \dfrac{c}{a}\] …(2)
Dividing equation (1) by equation (2)
$\dfrac{{\alpha + \beta }}{{\alpha \beta }} = \dfrac{{\dfrac{{ - b}}{a}}}{{\dfrac{c}{a}}}$
$\dfrac{1}{\alpha } + \dfrac{1}{\beta } = \dfrac{{ - b}}{c}$ …(3)
Taking reciprocal of equation (2)
$\dfrac{1}{{\alpha \beta }} = \dfrac{a}{c}$ …(4)
Given equation, $c{x^2} + bx + a = 0$
Sum of roots op equation $c{x^2} + bx + a = 0$ is $\dfrac{{ - b}}{c}$
Product of roots op equation $c{x^2} + bx + a = 0$ is $\dfrac{a}{c}$
From equation (3) and (4)
Roots of the equation $c{x^2} + bx + a = 0$ are $\dfrac{1}{\alpha },\dfrac{1}{\beta }$
Hence, correct option is (C)
Note: Students should divide sum by product of roots of equation for easy calculations if they try any other method they can make mistakes.
Formula Used: If the quadratic equation is $a{x^2} + bx + c = 0$. Then,
Sum of the roots $ = \dfrac{{ - b}}{a}$
Product of roots $ = \dfrac{c}{a}$
Complete step by step solution: Given, the roots of the equation $a{x^2} + bx + c = 0$ are $\alpha $ and $\beta $.
Sum of the roots $ = \dfrac{{ - b}}{a}$
$\alpha + \beta = \dfrac{{ - b}}{a}$ …(1)
Product of roots $ = \dfrac{c}{a}$
\[\alpha \beta = \dfrac{c}{a}\] …(2)
Dividing equation (1) by equation (2)
$\dfrac{{\alpha + \beta }}{{\alpha \beta }} = \dfrac{{\dfrac{{ - b}}{a}}}{{\dfrac{c}{a}}}$
$\dfrac{1}{\alpha } + \dfrac{1}{\beta } = \dfrac{{ - b}}{c}$ …(3)
Taking reciprocal of equation (2)
$\dfrac{1}{{\alpha \beta }} = \dfrac{a}{c}$ …(4)
Given equation, $c{x^2} + bx + a = 0$
Sum of roots op equation $c{x^2} + bx + a = 0$ is $\dfrac{{ - b}}{c}$
Product of roots op equation $c{x^2} + bx + a = 0$ is $\dfrac{a}{c}$
From equation (3) and (4)
Roots of the equation $c{x^2} + bx + a = 0$ are $\dfrac{1}{\alpha },\dfrac{1}{\beta }$
Hence, correct option is (C)
Note: Students should divide sum by product of roots of equation for easy calculations if they try any other method they can make mistakes.
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

