
If one of the roots of equation ${{x}^{2}}+ax+3=0$ is 3 and one of the roots of the equation ${{x}^{2}}+ax+b=0$ is three times the other root, then the value of b is
A . 3
B. 4
C. 2
D. 1
Answer
163.8k+ views
Hint: In this question, we are given quadratic equations with their roots and we have to find the value of b. For this, first, we compare the equations with the standard form of the quadratic equation and then find the sum and the product of roots. By equating the roots we are able to get the value of b.
Formula used:
Sum of roots = $-\dfrac{b}{a}$
And the product of roots = $\dfrac{c}{a}$
Complete step by step Solution:
Given equation is ${{x}^{2}}+ax+3=0$
Compare it with standard form of quadratic equation $a{{x}^{2}}+bx+c=0$, we get
$a=1,b=a,c=3$
Let $\alpha $ and 3 be the roots of the above equation
then the sum of roots ($\alpha +3$) = $-\dfrac{b}{a}$= $-\dfrac{(a)}{1}$= - a
and the product of roots ($3\alpha $) = $\dfrac{c}{a}$= $\dfrac{3}{1}$= 3
as $3\alpha $= 3
then $\alpha =1$
as $\alpha +3$= -a
By putting the value $\alpha =1$ in the above equation, we get
a = - 4
Now let $\beta $ and $3\beta $ are the roots of the equation ${{x}^{2}}+ax+b=0$
Similarly we Compare it with standard form of quadratic equation $a{{x}^{2}}+bx+c=0$, we get
$a=1,b=a,c=b$
then the sum of roots ($\beta +3\beta $) = $-\dfrac{b}{a}$= $-\dfrac{(a)}{1}$= - a
$4\beta $= -a
As we find out the value of a =-4, so $\beta $= 1
and the product of roots ($\beta \times 3\beta $) = $\dfrac{c}{a}$= $\dfrac{b}{1}$= b
as $\beta $=1 , so $1\times 3=b$
then $3=b$
Hence the value of b = 3
Therefore, the correct option is (A).
Note: In these types of questions, we can find the sum and the product of roots by the formula
if x and y are the roots of any quadratic equation the value of xy will be equal to $\dfrac{ constant\, term}{coefficient\, of\, x^2}$ and the sum of the roots that is x + y is equal to $\dfrac{ -coefficient\, of \,x}{coefficient\, of\, x^2}$ and by solving it we get the desired answer.
Formula used:
Sum of roots = $-\dfrac{b}{a}$
And the product of roots = $\dfrac{c}{a}$
Complete step by step Solution:
Given equation is ${{x}^{2}}+ax+3=0$
Compare it with standard form of quadratic equation $a{{x}^{2}}+bx+c=0$, we get
$a=1,b=a,c=3$
Let $\alpha $ and 3 be the roots of the above equation
then the sum of roots ($\alpha +3$) = $-\dfrac{b}{a}$= $-\dfrac{(a)}{1}$= - a
and the product of roots ($3\alpha $) = $\dfrac{c}{a}$= $\dfrac{3}{1}$= 3
as $3\alpha $= 3
then $\alpha =1$
as $\alpha +3$= -a
By putting the value $\alpha =1$ in the above equation, we get
a = - 4
Now let $\beta $ and $3\beta $ are the roots of the equation ${{x}^{2}}+ax+b=0$
Similarly we Compare it with standard form of quadratic equation $a{{x}^{2}}+bx+c=0$, we get
$a=1,b=a,c=b$
then the sum of roots ($\beta +3\beta $) = $-\dfrac{b}{a}$= $-\dfrac{(a)}{1}$= - a
$4\beta $= -a
As we find out the value of a =-4, so $\beta $= 1
and the product of roots ($\beta \times 3\beta $) = $\dfrac{c}{a}$= $\dfrac{b}{1}$= b
as $\beta $=1 , so $1\times 3=b$
then $3=b$
Hence the value of b = 3
Therefore, the correct option is (A).
Note: In these types of questions, we can find the sum and the product of roots by the formula
if x and y are the roots of any quadratic equation the value of xy will be equal to $\dfrac{ constant\, term}{coefficient\, of\, x^2}$ and the sum of the roots that is x + y is equal to $\dfrac{ -coefficient\, of \,x}{coefficient\, of\, x^2}$ and by solving it we get the desired answer.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

IIT JEE Main Chemistry 2025: Syllabus, Important Chapters, Weightage

JEE Main Maths Question Paper PDF Download with Answer Key

JEE Main 2025 Session 2 City Intimation Slip Released - Download Link

Trending doubts
JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
