
If \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\], then
\[\dfrac{dy}{dx}\] is equal to
(a) \[\dfrac{1}{x}\]
(b) \[\dfrac{1}{2}\]
(c) \[\dfrac{-1}{2}\]
(d) \[\dfrac{-1}{x}\]
(e) \[1\]
Answer
232.8k+ views
To find the value of \[\dfrac{dy}{dx}\], first evaluate \[\dfrac{dy}{dt}\]and \[\dfrac{dx}{dt}\]. Then use the formula \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}}\] to get the value of \[\dfrac{dy}{dx}\].
Complete step-by-step answer:
We have the parametric equations \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We have to evaluate \[\dfrac{dy}{dx}\].
We will first evaluate the values of \[\dfrac{dy}{dt}\]and \[\dfrac{dx}{dt}\]. Then, we will rearrange the terms such that \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}}\]to get the value of \[\dfrac{dy}{dx}\].
We will begin by finding the value of \[\dfrac{dx}{dt}\]. We have the parametric equation \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right).....\left( 1 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \sin x \right)\], we will multiply and divide the equation by \[dx\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}\].
We know that the first derivative of the function \[y=\sin x\] is \[\dfrac{dy}{dx}=\cos x\].
Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}=\cos x\dfrac{dx}{dt}\].
We know that \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. So, we can write \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\] in the above equation, we get \[\cos x=\sqrt{1-{{\sin }^{2}}x}=\sqrt{1-{{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}}=\dfrac{\sqrt{{{\left( 1+{{t}^{2}} \right)}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}+2{{t}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}-2{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{{{\left( 1-{{t}^{2}} \right)}^{2}}}}{1+{{t}^{2}}}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \sin x \right)=\cos x\dfrac{dx}{dt}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}.....\left( 2 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1+{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( 2t \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2t+2{{t}^{2}}-4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}.....\left( 3 \right)\]. Substituting equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we get \[\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)\left( 1-{{t}^{2}} \right)}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 4 \right)\].
We will now find the value of \[\dfrac{dy}{dt}\]. We have the parametric equation \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right).....\left( 5 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \tan y \right)\], we will multiply and divide the equation by \[dy\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}\].
We know that the first derivative of the function \[y=\tan x\] is \[\dfrac{dy}{dx}={{\sec }^{2}}x\].
Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}={{\sec }^{2}}y\dfrac{dy}{dt}\].
We know that \[1+{{\tan }^{2}}y={{\sec }^{2}}y\].
Substituting \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\] in the above equation, we get \[{{\sec }^{2}}y=1+{{\tan }^{2}}y=1+{{\left( \dfrac{2t}{1-{{t}^{2}}} \right)}^{2}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \tan y \right)={{\sec }^{2}}y\dfrac{dy}{dt}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}.....\left( 6 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1-{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( -2t \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}.....\left( 7 \right)\]. Substituting equation \[\left( 6 \right),\left( 7 \right)\]in equation \[\left( 5 \right)\], we get \[\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dy}{dt}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 8 \right)\].
Dividing equation \[\left( 8 \right)\] by equation \[\left( 4 \right)\], we get \[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}\].
Simplifying the above expression, we have \[\dfrac{dy}{dx}=1\].
Hence, given \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\], the value of \[\dfrac{dy}{dx}\]is \[1\], which is option (e).
Note: We can also solve this question by simplifying the expression using inverse trigonometric functions. For \[\left| t \right|<1\], we can write \[x={{\sin }^{-1}}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=2{{\tan }^{-1}}t,y={{\tan }^{-1}}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=2{{\tan }^{-1}}t\] and thus, we can write \[x=y\] and differentiate it to find the derivative.
Complete step-by-step answer:
We have the parametric equations \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We have to evaluate \[\dfrac{dy}{dx}\].
We will first evaluate the values of \[\dfrac{dy}{dt}\]and \[\dfrac{dx}{dt}\]. Then, we will rearrange the terms such that \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}}\]to get the value of \[\dfrac{dy}{dx}\].
We will begin by finding the value of \[\dfrac{dx}{dt}\]. We have the parametric equation \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right).....\left( 1 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \sin x \right)\], we will multiply and divide the equation by \[dx\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}\].
We know that the first derivative of the function \[y=\sin x\] is \[\dfrac{dy}{dx}=\cos x\].
Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}=\cos x\dfrac{dx}{dt}\].
We know that \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. So, we can write \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\] in the above equation, we get \[\cos x=\sqrt{1-{{\sin }^{2}}x}=\sqrt{1-{{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}}=\dfrac{\sqrt{{{\left( 1+{{t}^{2}} \right)}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}+2{{t}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}-2{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{{{\left( 1-{{t}^{2}} \right)}^{2}}}}{1+{{t}^{2}}}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \sin x \right)=\cos x\dfrac{dx}{dt}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}.....\left( 2 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1+{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( 2t \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2t+2{{t}^{2}}-4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}.....\left( 3 \right)\]. Substituting equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we get \[\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)\left( 1-{{t}^{2}} \right)}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 4 \right)\].
We will now find the value of \[\dfrac{dy}{dt}\]. We have the parametric equation \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right).....\left( 5 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \tan y \right)\], we will multiply and divide the equation by \[dy\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}\].
We know that the first derivative of the function \[y=\tan x\] is \[\dfrac{dy}{dx}={{\sec }^{2}}x\].
Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}={{\sec }^{2}}y\dfrac{dy}{dt}\].
We know that \[1+{{\tan }^{2}}y={{\sec }^{2}}y\].
Substituting \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\] in the above equation, we get \[{{\sec }^{2}}y=1+{{\tan }^{2}}y=1+{{\left( \dfrac{2t}{1-{{t}^{2}}} \right)}^{2}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \tan y \right)={{\sec }^{2}}y\dfrac{dy}{dt}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}.....\left( 6 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1-{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( -2t \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}.....\left( 7 \right)\]. Substituting equation \[\left( 6 \right),\left( 7 \right)\]in equation \[\left( 5 \right)\], we get \[\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dy}{dt}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 8 \right)\].
Dividing equation \[\left( 8 \right)\] by equation \[\left( 4 \right)\], we get \[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}\].
Simplifying the above expression, we have \[\dfrac{dy}{dx}=1\].
Hence, given \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\], the value of \[\dfrac{dy}{dx}\]is \[1\], which is option (e).
Note: We can also solve this question by simplifying the expression using inverse trigonometric functions. For \[\left| t \right|<1\], we can write \[x={{\sin }^{-1}}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=2{{\tan }^{-1}}t,y={{\tan }^{-1}}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=2{{\tan }^{-1}}t\] and thus, we can write \[x=y\] and differentiate it to find the derivative.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

