
If for hydrogen \[{C_P} - {C_V} = m\] and for nitrogen \[{C_P} - {C_V} = n\] , where ${C_P}$ and ${C_V}$ refer to specific heats per unit mass respectively at constant pressure and constant volume, the relation between m and n is (molecular weight of hydrogen=2 and molecular weight of nitrogen=14)
(A) $n = 14m$
(B) $n = 7m$
(C) $m = 7n$
(D) $m = 14n$
Answer
131.7k+ views
Hint In this question, the specific heats per unit mass is given and we know the relation between molar specific heats of gases which is the amount of heat required by a mole of gas to raise its temperature by a degree . So, we can use the relation between mass and mole to get the result.
Formula Used:
\[{C_P} - {C_V} = R\]
Complete step by step answer
We know the relation \[{C_P} - {C_V} = R\] where ${C_P}$ is the specific heat per unit mole at constant pressure and ${C_V}$ is the specific heat per unit mole at constant volume. It is for 1 mole of ideal gas. But in the question, specific heats per unit mass is mentioned.
If the molecular weight of a gas is ‘M’ then, 1 mole of gas = M gram that is ‘n’ moles of gas $ = n \times M$ grams
So, for ‘M’ grams, the equation will be \[{C_P} - {C_V} = \dfrac{R}{M}\]
From the question for hydrogen, we get \[2({C_P} - {C_V}) = R\]
and for nitrogen, \[14({C_P} - {C_V}) = R\]
now put the values given in the question to the above equation it becomes,
for hydrogen, \[2m = R\] and for nitrogen \[14n = R\] . As we can see, the right side of both the equations are same so equating them as equal,
\[2m = 14n \Rightarrow m = 7n\]
Hence, the correct option is C.
Note
The specific heat of gas is at constant pressure is greater than specific heat of gas is at constant volume. The difference between the two is utilized as the heat used in doing work against the external pressure applied to raise 1 mole of gas temperature by ${1^0}C$ at constant pressure. There is a difference in notation of specific heat and molar specific heat. If it is written in small like ${c_P}$ or ${c_V}$ , then it is specific heats at constant pressure and volume respectively and if it is written in capital like ${C_P}$ or ${C_V}$ , then it is molar specific heat at constant pressure and volume respectively.
Formula Used:
\[{C_P} - {C_V} = R\]
Complete step by step answer
We know the relation \[{C_P} - {C_V} = R\] where ${C_P}$ is the specific heat per unit mole at constant pressure and ${C_V}$ is the specific heat per unit mole at constant volume. It is for 1 mole of ideal gas. But in the question, specific heats per unit mass is mentioned.
If the molecular weight of a gas is ‘M’ then, 1 mole of gas = M gram that is ‘n’ moles of gas $ = n \times M$ grams
So, for ‘M’ grams, the equation will be \[{C_P} - {C_V} = \dfrac{R}{M}\]
From the question for hydrogen, we get \[2({C_P} - {C_V}) = R\]
and for nitrogen, \[14({C_P} - {C_V}) = R\]
now put the values given in the question to the above equation it becomes,
for hydrogen, \[2m = R\] and for nitrogen \[14n = R\] . As we can see, the right side of both the equations are same so equating them as equal,
\[2m = 14n \Rightarrow m = 7n\]
Hence, the correct option is C.
Note
The specific heat of gas is at constant pressure is greater than specific heat of gas is at constant volume. The difference between the two is utilized as the heat used in doing work against the external pressure applied to raise 1 mole of gas temperature by ${1^0}C$ at constant pressure. There is a difference in notation of specific heat and molar specific heat. If it is written in small like ${c_P}$ or ${c_V}$ , then it is specific heats at constant pressure and volume respectively and if it is written in capital like ${C_P}$ or ${C_V}$ , then it is molar specific heat at constant pressure and volume respectively.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter
