
If \[\cos {40^\circ } = x\] and\[\cos \theta = 1 - 2{x^2}\], then the possible values of \[\theta \] lying between \[{0^\circ }\]and \[{360^\circ }\]is
A. \[{100^\circ }\]and\[{260^\circ }\]
B. \[{80^\circ }\]and \[{280^\circ }\]
C. \[{280^\circ }\]and \[{110^\circ }\]
D. \[{110^\circ }\]and\[{260^\circ }\]
Answer
163.8k+ views
Hint: A trigonometric equation's general equation is the answer that includes all feasible solutions. Simply said, trigonometric equations are equations that include the sine and cosine trigonometric ratios on the variable. In this case, for the equation \[\cos {40^\circ } = x\]substitute the value of \[\cos \theta = 1 - 2{x^2}\] and take common variables outside and solve.
Complete step by step solution:We have given that the equation is \[\cos {40^\circ } = x\] and\[\cos \theta = 1 - 2{x^2}\]
From the given equation, as per the question;
Substitute the value of \[\cos {40^\circ } = x\] in \[\cos \theta = 1 - 2{x^2}\]
Observe the corresponding \[ = - \left( {2{{\cos }^2}{{40}^\circ } - 1} \right)\] value from the question.
\[ \Rightarrow \cos \theta = 1 - 2{\cos ^2}{40^\circ }\]
Take the minus sign from the above equation as common:
Multiply the minus sign with the term inside the parentheses:
\[ = - 2{\cos ^2}\left( {{{40}{\circ \:}}} \right) + 1\]
From the equation obtained, take\[\cos \]as common:
\[ = - \cos \left( {2 \times {{40}^\circ }} \right)\]
Multiply the term inside the parentheses to obtain the less complicated term:
\[ = - \cos {80^\circ }\]
Therefore, we will obtain two forms of equations as below:
\[\cos \theta = \cos \left( {{{180}^\circ } + {{80}^\circ }} \right)\]
Or
\[\cos \theta = \left( {\cos {{180}^\circ } - {{80}^\circ }} \right)\]
Hence, the possible values of \[\theta \]lying between \[{0^\circ }\]and\[{360^\circ }\]is \[\theta = {100^\circ }\]and\[{260^\circ }\]
Option ‘A’ is correct
Note: ometimes students make error in applying identities and are not able to comprehend how to arrive at the other. Students sometimes apply identities incorrectly\[sin{\rm{ }}\theta {\rm{ }} = {\rm{ }}1 - cos{\rm{ }}\theta \] \[tan{\rm{ }}\theta = {\rm{ }}1 + {\rm{ }}sec{\rm{ }}\theta \]. Starting the simplification of the either sides simultaneously are the common mistakes made while solving using trigonometry identities. Like terms should be grouped at the same side, so as to simplify the equation in much easier way. One thing we must remember is that all trigonometric ratios have the property that sin is not the same as sin because it denotes a ratio rather than a product.
Complete step by step solution:We have given that the equation is \[\cos {40^\circ } = x\] and\[\cos \theta = 1 - 2{x^2}\]
From the given equation, as per the question;
Substitute the value of \[\cos {40^\circ } = x\] in \[\cos \theta = 1 - 2{x^2}\]
Observe the corresponding \[ = - \left( {2{{\cos }^2}{{40}^\circ } - 1} \right)\] value from the question.
\[ \Rightarrow \cos \theta = 1 - 2{\cos ^2}{40^\circ }\]
Take the minus sign from the above equation as common:
Multiply the minus sign with the term inside the parentheses:
\[ = - 2{\cos ^2}\left( {{{40}{\circ \:}}} \right) + 1\]
From the equation obtained, take\[\cos \]as common:
\[ = - \cos \left( {2 \times {{40}^\circ }} \right)\]
Multiply the term inside the parentheses to obtain the less complicated term:
\[ = - \cos {80^\circ }\]
Therefore, we will obtain two forms of equations as below:
\[\cos \theta = \cos \left( {{{180}^\circ } + {{80}^\circ }} \right)\]
Or
\[\cos \theta = \left( {\cos {{180}^\circ } - {{80}^\circ }} \right)\]
Hence, the possible values of \[\theta \]lying between \[{0^\circ }\]and\[{360^\circ }\]is \[\theta = {100^\circ }\]and\[{260^\circ }\]
Option ‘A’ is correct
Note: ometimes students make error in applying identities and are not able to comprehend how to arrive at the other. Students sometimes apply identities incorrectly\[sin{\rm{ }}\theta {\rm{ }} = {\rm{ }}1 - cos{\rm{ }}\theta \] \[tan{\rm{ }}\theta = {\rm{ }}1 + {\rm{ }}sec{\rm{ }}\theta \]. Starting the simplification of the either sides simultaneously are the common mistakes made while solving using trigonometry identities. Like terms should be grouped at the same side, so as to simplify the equation in much easier way. One thing we must remember is that all trigonometric ratios have the property that sin is not the same as sin because it denotes a ratio rather than a product.
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
GFTI Colleges in India - List, Ranking & Admission Details

NIT Raipur Cut-off of Previous Years and Expected for 2025

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
