
If $b\sin \alpha =a\sin (\alpha +2\beta )$, then $\dfrac{a+b}{a-b}$ is equal to ?
A . $\dfrac{\tan \beta }{\tan (\alpha +\beta )}$
B . $\dfrac{\cot \beta }{\cot (\alpha -\beta )}$
C . $\dfrac{\cot \beta }{\cot (\alpha +\beta )}$
D . $\dfrac{\tan \beta }{\tan (\alpha -\beta )}$
Answer
162.6k+ views
Hint: In this question, we are given that $b\sin \alpha =a\sin (\alpha +2\beta )$ . First, we find the value of m from the given equation. Then we apply componendo and dividendo on the equation which is sometimes, in short, we called C and D rules and by using the formulas of $\sin A+\sin B$ and $\sin A-\sin B$and putting the formulas in the equation and simplifying it, we are able to get the desirable answer and choose the correct option.
Formula Used:
In this question, we use the identities which are described below:-
$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
And $\sin A-\sin B=2\cos \dfrac{A+B}{2}\sin \dfrac{A-B}{2}$
Complete step- by- step Solution:
Given $b\sin \alpha =a\sin (\alpha +2\beta )$
Then $\dfrac{\sin \alpha }{\sin (\alpha +2\beta )}=\dfrac{a}{b}$
Now we apply componendo and dividendo in the above equation,
Componendo and dividendo is a theorem on proportions that allows for an easy way to perform calculations and helps in reducing the number of expansions needed.
We get
$\dfrac{\sin \alpha +\sin (\alpha +2\beta )}{\sin \alpha -\sin (\alpha +2\beta )}=\dfrac{a+b}{a-b}$……………………………… (1)
Now we use the trigonometric formulas according to the above equation, which is
We know $\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
And $\sin A-\sin B=2\cos \dfrac{A+B}{2}\sin \dfrac{A-B}{2}$
Put the above formulas in equation (1), we get
$\dfrac{2\sin \dfrac{\alpha +(\alpha +2\beta )}{2}\cos \dfrac{\alpha -(\alpha +2\beta )}{2}}{2\cos \dfrac{\alpha +(\alpha +2\beta )}{2}\sin \dfrac{\alpha -(\alpha +2\beta )}{2}}=\dfrac{a+b}{a-b}$
Solving further, we get
$\dfrac{\sin (\alpha +\beta )\cos (-\beta )}{\cos (\alpha +\beta )\sin (-\beta )}=\dfrac{a+b}{a-b}$
By simplifying the above equation, we get
$\tan\lgroup\alpha+\beta\rgroup~\cot\lgroup\beta\rgroup=\dfrac{a+b}{a-b}$
$\dfrac{\cot \beta }{\cot (\alpha +\beta )}=\dfrac{a+b}{a-b}$
Thus, Option ( C ) is the correct .
Note: In these types of questions, Students made mistakes in understanding the difference between componendo and dividendo. It is a mathematical rule that states that the product of two or more binomials can be divided by the sum of the individual terms within each binomial. In this, we add the numerator and denominator in the numerator and subtract both terms in the denominator. This allows for simplified algebraic equations and solutions. The dividendo part of the equation belongs to the first binomial, while the componendo belongs to all subsequent binomials.
Formula Used:
In this question, we use the identities which are described below:-
$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
And $\sin A-\sin B=2\cos \dfrac{A+B}{2}\sin \dfrac{A-B}{2}$
Complete step- by- step Solution:
Given $b\sin \alpha =a\sin (\alpha +2\beta )$
Then $\dfrac{\sin \alpha }{\sin (\alpha +2\beta )}=\dfrac{a}{b}$
Now we apply componendo and dividendo in the above equation,
Componendo and dividendo is a theorem on proportions that allows for an easy way to perform calculations and helps in reducing the number of expansions needed.
We get
$\dfrac{\sin \alpha +\sin (\alpha +2\beta )}{\sin \alpha -\sin (\alpha +2\beta )}=\dfrac{a+b}{a-b}$……………………………… (1)
Now we use the trigonometric formulas according to the above equation, which is
We know $\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
And $\sin A-\sin B=2\cos \dfrac{A+B}{2}\sin \dfrac{A-B}{2}$
Put the above formulas in equation (1), we get
$\dfrac{2\sin \dfrac{\alpha +(\alpha +2\beta )}{2}\cos \dfrac{\alpha -(\alpha +2\beta )}{2}}{2\cos \dfrac{\alpha +(\alpha +2\beta )}{2}\sin \dfrac{\alpha -(\alpha +2\beta )}{2}}=\dfrac{a+b}{a-b}$
Solving further, we get
$\dfrac{\sin (\alpha +\beta )\cos (-\beta )}{\cos (\alpha +\beta )\sin (-\beta )}=\dfrac{a+b}{a-b}$
By simplifying the above equation, we get
$\tan\lgroup\alpha+\beta\rgroup~\cot\lgroup\beta\rgroup=\dfrac{a+b}{a-b}$
$\dfrac{\cot \beta }{\cot (\alpha +\beta )}=\dfrac{a+b}{a-b}$
Thus, Option ( C ) is the correct .
Note: In these types of questions, Students made mistakes in understanding the difference between componendo and dividendo. It is a mathematical rule that states that the product of two or more binomials can be divided by the sum of the individual terms within each binomial. In this, we add the numerator and denominator in the numerator and subtract both terms in the denominator. This allows for simplified algebraic equations and solutions. The dividendo part of the equation belongs to the first binomial, while the componendo belongs to all subsequent binomials.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
