
If \[A({x_1},{y_1}),B({x_2},{y_2}),C({x_3},{y_3})\] are the vertices of a triangle, then what is the excentre with respect to B?
A.\[\left( {\dfrac{{a{x_1} - b{x_2} + c{x_3}}}{{a - b + c}},\dfrac{{a{y_1} - b{y_2} + c{y_3}}}{{a - b + c}}} \right)\]
B. \[\left( {\dfrac{{a{x_1} + b{x_2} - c{x_3}}}{{a + b - c}},\dfrac{{a{y_1} + b{y_2} - c{y_3}}}{{a + b - c}}} \right)\]
C. \[\left( {\dfrac{{a{x_1} - b{x_2} - c{x_3}}}{{a - b - c}},\dfrac{{a{y_1} - b{y_2} - c{y_3}}}{{a - b - c}}} \right)\]
D. None of these
Answer
217.8k+ views
Hints Write the formula of the excentre of a triangle, then substitute the given vertices in the formula to obtain the required answer.
Complete step by step solution
The formula of excentre of a triangle PQR with respect to Q is \[\left( {\dfrac{{a{p_1} - b{p_2} + c{p_3}}}{{a - b + c}},\dfrac{{a{q_1} - b{q_2} + c{q_3}}}{{a - b + c}}} \right)\], where \[P({p_1},{q_1}),Q({p_2},{q_2}),R({p_3},{q_3})\]are the vertices of the triangle and a, b, c are the distance between BC, CA and Ab respectively.
The required formula is \[\left( {\dfrac{{a{x_1} - b{x_2} + c{x_3}}}{{a - b + c}},\dfrac{{a{y_1} - b{y_2} + c{y_3}}}{{a - b + c}}} \right)\].
The correct option is “A”
Additional information The angle bisector of a triangle is the median of the triangle. The median is the line that joins the middle point of every vertex with the opposite vertex of the triangle. Three medians of the triangle divide the triangle into six equal parts. The point at which the bisector of one interior angle and two bisectors of exterior angles intersect is called the excentre.
Note Sometimes students calculate the whole formula and then write but for this question that is not needed you just have to identify the correct answer.
Complete step by step solution
The formula of excentre of a triangle PQR with respect to Q is \[\left( {\dfrac{{a{p_1} - b{p_2} + c{p_3}}}{{a - b + c}},\dfrac{{a{q_1} - b{q_2} + c{q_3}}}{{a - b + c}}} \right)\], where \[P({p_1},{q_1}),Q({p_2},{q_2}),R({p_3},{q_3})\]are the vertices of the triangle and a, b, c are the distance between BC, CA and Ab respectively.
The required formula is \[\left( {\dfrac{{a{x_1} - b{x_2} + c{x_3}}}{{a - b + c}},\dfrac{{a{y_1} - b{y_2} + c{y_3}}}{{a - b + c}}} \right)\].
The correct option is “A”
Additional information The angle bisector of a triangle is the median of the triangle. The median is the line that joins the middle point of every vertex with the opposite vertex of the triangle. Three medians of the triangle divide the triangle into six equal parts. The point at which the bisector of one interior angle and two bisectors of exterior angles intersect is called the excentre.
Note Sometimes students calculate the whole formula and then write but for this question that is not needed you just have to identify the correct answer.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Modulus of Elasticity Explained: Definition, Formula & Examples

Moment of Inertia of a Cube: Formula, Calculation & Examples

Moment of Inertia of a Disc Explained Simply

Moment of Inertia of a Square: Formula & Calculation Guide

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

