
If \[{{a}^{2}},{{b}^{2}},{{c}^{2}}\] are in A.P. consider two statements
(i) \[\dfrac{1}{b+c},\dfrac{1}{c+a},\dfrac{1}{a+b}\] are in A.P
(ii) \[\dfrac{a}{b+c},\dfrac{b}{c+a},\dfrac{c}{a+b}\] are in A.P
A. (i) and (ii) both correct
B. (i) and (ii) both incorrect
C. (i) correct (ii) incorrect
D. (i) incorrect (ii) correct
Answer
232.8k+ views
Hint: In this question, we have to prove that the given series are in A.P. Here we have given with a series which is A.P. So, we can find its arithmetic mean. By using this A.M in the given series, we can prove that the given series is also in A.P. Here the arithmetic mean is half of the first and last terms of the series which is equal to the middle term.
Formula Used: If $a,b,c$ are in arithmetic progression, then their arithmetic mean is half of the first and last terms of the series and it is equal to the middle term of the series.
$\begin{align}
& A.M=\dfrac{a+c}{2}=b \\
& \Rightarrow a+c=2b \\
\end{align}$
Complete step by step solution: Given that, \[{{a}^{2}},{{b}^{2}},{{c}^{2}}\] are in arithmetic progression.
Then, their arithmetic mean is
$\begin{align}
& \dfrac{{{a}^{2}}+{{c}^{2}}}{2}={{b}^{2}} \\
& \Rightarrow {{a}^{2}}+{{c}^{2}}=2{{b}^{2}}\text{ }...(1) \\
\end{align}$
Then, the given series,
If \[\dfrac{1}{b+c},\dfrac{1}{c+a},\dfrac{1}{a+b}\] are in arithmetic progression, we can write their arithmetic mean as
$\dfrac{1}{b+c}+\dfrac{1}{a+b}=\dfrac{2}{c+a}$
Then, on simplifying the above expression, we get
$\begin{align}
& \dfrac{1}{b+c}+\dfrac{1}{a+b}=\dfrac{2}{c+a} \\
& \Rightarrow \dfrac{(a+b)+(b+c)}{(b+c)(a+b)}=\dfrac{2}{c+a} \\
& \Rightarrow \dfrac{(a+2b+c)}{ab+{{b}^{2}}+ac+bc}=\dfrac{2}{c+a} \\
& \Rightarrow \dfrac{(a+2b+c)(c+a)}{ab+{{b}^{2}}+ac+bc}=2 \\
\end{align}$
$\begin{align}
& \Rightarrow \dfrac{ac+{{a}^{2}}+2bc+2ab+{{c}^{2}}+ac}{{{b}^{2}}+ab+ac+bc}=2 \\
& \Rightarrow \dfrac{{{a}^{2}}+{{c}^{2}}+2ab+2ac+2bc}{{{b}^{2}}+ab+ac+bc}=2 \\
\end{align}$
On substituting (1), we get
$\begin{align}
& \Rightarrow \dfrac{2{{b}^{2}}+2ab+2ac+2bc}{{{b}^{2}}+ab+ac+bc}=2 \\
& \Rightarrow \dfrac{2\left( {{b}^{2}}+ab+ac+bc \right)}{{{b}^{2}}+ab+ac+bc}=2 \\
& \therefore 2=2 \\
\end{align}$
Hence, the given terms \[\dfrac{1}{b+c},\dfrac{1}{c+a},\dfrac{1}{a+b}\] are in arithmetic progression.
So, statement (i) is correct.
Now, the second statement where, if the terms \[\dfrac{a}{b+c},\dfrac{b}{c+a},\dfrac{c}{a+b}\] are in arithmetic progression, we can write their arithmetic mean as
\[\dfrac{a}{b+c}+\dfrac{c}{a+b}=\dfrac{2b}{c+a}\]
The, on simplifying the above expression, we get
\[\begin{align}
& \dfrac{a}{b+c}+\dfrac{c}{a+b}=\dfrac{2b}{c+a} \\
& \Rightarrow \dfrac{a(a+b)+c(b+c)}{(b+c)(a+b)}=\dfrac{2b}{c+a} \\
& \Rightarrow \dfrac{{{a}^{2}}+ab+cb+{{c}^{2}}}{ab+{{b}^{2}}+ac+bc}=\dfrac{2b}{c+a} \\
& \Rightarrow \dfrac{({{a}^{2}}+ab+cb+{{c}^{2}})(c+a)}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \dfrac{({{a}^{2}}+{{c}^{2}}+ab+cb)(c+a)}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{\left( 2{{b}^{2}}+ab+bc \right)(c+a)}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{2{{b}^{2}}c+2a{{b}^{2}}+abc+{{a}^{2}}b+b{{c}^{2}}+abc}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{2{{b}^{2}}c+2a{{b}^{2}}+2abc+b({{a}^{2}}+{{c}^{2}})}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \dfrac{2{{b}^{2}}c+2a{{b}^{2}}+2abc+b(2{{b}^{2}})}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{2b(bc+ab+ac+{{b}^{2}})}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \therefore 2=2 \\
\end{align}\]
Hence, the given terms \[\dfrac{a}{b+c},\dfrac{b}{c+a},\dfrac{c}{a+b}\] are in arithmetic progression.
So, statement (ii) is also correct.
Therefore, both statements are correct.
Option ‘A’ is correct
Note: Here we need to remember that, for proving a series to be an arithmetic series, we need to find their arithmetic mean. If the average of the first and last terms of the series is equal to the middle term, then those terms are said to be in arithmetic progression
Formula Used: If $a,b,c$ are in arithmetic progression, then their arithmetic mean is half of the first and last terms of the series and it is equal to the middle term of the series.
$\begin{align}
& A.M=\dfrac{a+c}{2}=b \\
& \Rightarrow a+c=2b \\
\end{align}$
Complete step by step solution: Given that, \[{{a}^{2}},{{b}^{2}},{{c}^{2}}\] are in arithmetic progression.
Then, their arithmetic mean is
$\begin{align}
& \dfrac{{{a}^{2}}+{{c}^{2}}}{2}={{b}^{2}} \\
& \Rightarrow {{a}^{2}}+{{c}^{2}}=2{{b}^{2}}\text{ }...(1) \\
\end{align}$
Then, the given series,
If \[\dfrac{1}{b+c},\dfrac{1}{c+a},\dfrac{1}{a+b}\] are in arithmetic progression, we can write their arithmetic mean as
$\dfrac{1}{b+c}+\dfrac{1}{a+b}=\dfrac{2}{c+a}$
Then, on simplifying the above expression, we get
$\begin{align}
& \dfrac{1}{b+c}+\dfrac{1}{a+b}=\dfrac{2}{c+a} \\
& \Rightarrow \dfrac{(a+b)+(b+c)}{(b+c)(a+b)}=\dfrac{2}{c+a} \\
& \Rightarrow \dfrac{(a+2b+c)}{ab+{{b}^{2}}+ac+bc}=\dfrac{2}{c+a} \\
& \Rightarrow \dfrac{(a+2b+c)(c+a)}{ab+{{b}^{2}}+ac+bc}=2 \\
\end{align}$
$\begin{align}
& \Rightarrow \dfrac{ac+{{a}^{2}}+2bc+2ab+{{c}^{2}}+ac}{{{b}^{2}}+ab+ac+bc}=2 \\
& \Rightarrow \dfrac{{{a}^{2}}+{{c}^{2}}+2ab+2ac+2bc}{{{b}^{2}}+ab+ac+bc}=2 \\
\end{align}$
On substituting (1), we get
$\begin{align}
& \Rightarrow \dfrac{2{{b}^{2}}+2ab+2ac+2bc}{{{b}^{2}}+ab+ac+bc}=2 \\
& \Rightarrow \dfrac{2\left( {{b}^{2}}+ab+ac+bc \right)}{{{b}^{2}}+ab+ac+bc}=2 \\
& \therefore 2=2 \\
\end{align}$
Hence, the given terms \[\dfrac{1}{b+c},\dfrac{1}{c+a},\dfrac{1}{a+b}\] are in arithmetic progression.
So, statement (i) is correct.
Now, the second statement where, if the terms \[\dfrac{a}{b+c},\dfrac{b}{c+a},\dfrac{c}{a+b}\] are in arithmetic progression, we can write their arithmetic mean as
\[\dfrac{a}{b+c}+\dfrac{c}{a+b}=\dfrac{2b}{c+a}\]
The, on simplifying the above expression, we get
\[\begin{align}
& \dfrac{a}{b+c}+\dfrac{c}{a+b}=\dfrac{2b}{c+a} \\
& \Rightarrow \dfrac{a(a+b)+c(b+c)}{(b+c)(a+b)}=\dfrac{2b}{c+a} \\
& \Rightarrow \dfrac{{{a}^{2}}+ab+cb+{{c}^{2}}}{ab+{{b}^{2}}+ac+bc}=\dfrac{2b}{c+a} \\
& \Rightarrow \dfrac{({{a}^{2}}+ab+cb+{{c}^{2}})(c+a)}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \dfrac{({{a}^{2}}+{{c}^{2}}+ab+cb)(c+a)}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{\left( 2{{b}^{2}}+ab+bc \right)(c+a)}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{2{{b}^{2}}c+2a{{b}^{2}}+abc+{{a}^{2}}b+b{{c}^{2}}+abc}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{2{{b}^{2}}c+2a{{b}^{2}}+2abc+b({{a}^{2}}+{{c}^{2}})}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
\end{align}\]
\[\begin{align}
& \Rightarrow \dfrac{2{{b}^{2}}c+2a{{b}^{2}}+2abc+b(2{{b}^{2}})}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \Rightarrow \dfrac{2b(bc+ab+ac+{{b}^{2}})}{b(ab+{{b}^{2}}+ac+bc)}=2 \\
& \therefore 2=2 \\
\end{align}\]
Hence, the given terms \[\dfrac{a}{b+c},\dfrac{b}{c+a},\dfrac{c}{a+b}\] are in arithmetic progression.
So, statement (ii) is also correct.
Therefore, both statements are correct.
Option ‘A’ is correct
Note: Here we need to remember that, for proving a series to be an arithmetic series, we need to find their arithmetic mean. If the average of the first and last terms of the series is equal to the middle term, then those terms are said to be in arithmetic progression
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

