
If \[A\] and \[B\] are two fixed points and \[P\] is a variable point such that \[PA + PB = 4\], where \[AB < 4\], what is the locus of\[P\]?
A. A parabola
B. An ellipse
C. A hyperbola
D. None of these
Answer
163.2k+ views
Hint: Let the coordinates of the variable point \[P\] be \[\left( {h,k} \right)\] and the coordinates of the two fixed points \[A\] and \[B\] be \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\]. Find the length of the line segments \[PA\] and \[PB\] and substitute these in the given equation \[PA + PB = 4\] and \[AB < 4\].
Formula Used:
Distance between two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] is \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Complete step-by-step solution:
Let the coordinates of the variable point \[P\] be \[\left( {h,k} \right)\] and the coordinates of the two fixed points \[A\] and \[B\] be \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\].
Let us find the lengths of the line segments \[PA\] and \[PB\]
For \[PA\], \[{x_1} = h,{y_1} = k,{x_2} = a,{y_2} = b\]
So, \[PA = \sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} \]
For \[PB\], \[{x_1} = h,{y_1} = k,{x_2} = c,{y_2} = d\]
So, \[PB = \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
Given that \[PA + PB = 4\]
Substituting the values of \[PA\] and \[PB\] in the equation, we get
\[\sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} + \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} = 4\]
\[ \Rightarrow \sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} = 4 - \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
Squaring both sides, we get
\[ \Rightarrow {\left( {\sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} } \right)^2} = {\left( {4 - \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} } \right)^2}\]
Use the identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {\left( {a - h} \right)^2} + {\left( {b - k} \right)^2} = 16 - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} + {\left( {c - h} \right)^2} + {\left( {d - k} \right)^2}\]
Again, use the identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {a^2} - 2ah + {h^2} + {b^2} - 2bk + {k^2} = 16 - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} + {c^2} - 2ch + {h^2} + {d^2} - 2dk + {k^2}\]
Cancel the terms \[{h^2}\] and \[{k^2}\] from both sides.
\[ \Rightarrow {a^2} - 2ah + {b^2} - 2bk = 16 - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} + {c^2} - 2ch + {d^2} - 2dk\]
\[ \Rightarrow {a^2} + {b^2} - {c^2} - {d^2} - 2ah - 2bk + 2ch + 2dk - 16 = - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
\[ \Rightarrow {a^2} + {b^2} - {c^2} - {d^2} + 2\left( {c - a} \right)h + 2\left( {d - b} \right)k - 16 = - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
The points \[A\left( {a,b} \right)\] and \[B\left( {c,d} \right)\] are fixed. It means \[a,b,c,d\] are constants.
Let \[{a^2} + {b^2} - {c^2} - {d^2} - 16 = m\], \[2\left( {c - a} \right) = p\] and \[2\left( {d - b} \right) = q\]
Then the equation becomes
\[m + ph + qk = - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
Squaring both sides, we get
\[ \Rightarrow {\left( {m + ph + qk} \right)^2} = 64\left\{ {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \right\}\]
Use the formula \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {m^2} + {p^2}{h^2} + {q^2}{k^2} + 2mph + 2pqhk + 2mqk = 64\left( {{c^2} - 2ch + {h^2} + {d^2} - 2dk + {k^2}} \right)\]
\[ \Rightarrow {m^2} + {p^2}{h^2} + {q^2}{k^2} + 2mph + 2pqhk + 2mqk = 64{c^2} - 128ch + 64{h^2} + 64{d^2} - 128dk + 64{k^2}\]
Arrange the terms.
\[ \Rightarrow {p^2}{h^2} - 64{h^2} + 2pqhk + {q^2}{k^2} - 64{k^2} + 2mph + 128ch + 2mqk + 128dk + {m^2} - 64{c^2} - 64{d^2} = 0\]
\[ \Rightarrow \left( {{p^2} - 64} \right){h^2} + 2pqhk + \left( {{q^2} - 64} \right){k^2} + 2\left( {mp + 64c} \right)h + 2\left( {mq + 64d} \right)k + \left( {{m^2} - 64{c^2} - 64{d^2}} \right) = 0\]
Replacing \[h\] by \[x\] and \[k\] by \[y\], we get
\[ \Rightarrow \left( {{p^2} - 64} \right){x^2} + 2pqxy + \left( {{q^2} - 64} \right){y^2} + 2\left( {mp + 64c} \right)x + 2\left( {mq + 64d} \right)y + \left( {{m^2} - 64{c^2} - 64{d^2}} \right) = 0\]
This is the equation of the locus of \[P\left( {h,k} \right)\].
Comparing the equation of the locus with the general form of a conic \[A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\], we get \[A = {p^2} - 64\], \[B = 2pq\], \[C = {q^2} - 64\], \[D = 2\left( {mp + 64c} \right)\], \[E = 2\left( {mq + 64d} \right)\], \[F = {m^2} - 64{c^2} - 64{d^2}\]
Now, \[{B^2} - 4AC = {\left( {2pq} \right)^2} - 4\left( {{p^2} - 64} \right)\left( {{q^2} - 64} \right)\]
\[ = 4{p^2}{q^2} - 4{p^2}{q^2} + 256{p^2} + 256{q^2} - 16384\]
\[ = 256{p^2} + 256{q^2} - 16384\]
\[ = 256\left( {{p^2} + {q^2} - 64} \right)\]
We assumed that \[2\left( {c - a} \right) = p\] and \[2\left( {d - b} \right) = q\]
\[ = 256\left[ {{{\left\{ {2\left( {c - a} \right)} \right\}}^2} + {{\left\{ {2\left( {d - b} \right)} \right\}}^2} - 64} \right]\]
\[ = 256\left\{ {4{{\left( {c - a} \right)}^2} + 4{{\left( {d - b} \right)}^2} - 64} \right\}\]
\[ = 256\left[ {4\left\{ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2} - 16} \right\}} \right]\]
\[ = 1024\left\{ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2} - 16} \right\}\]
Now, it is given that \[AB < 4\]
\[ \Rightarrow \sqrt {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} < 4\]
\[ \Rightarrow {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} < 16\]
\[ \Rightarrow {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} - 16 < 0\]
So, \[{B^2} - 4AC < 0\] and \[A \ne C\], in general.
Thus, the equation represents an ellipse.
Hence, option B is correct.
Note: Every second degree equation in two variables represents a conic. Many students can’t remember the conditions for the equations to be of a parabola, an ellipse, a hyperbola and a circle. So, they can’t identify the equation of the conic. For parabola, \[{B^2} - 4AC = 0\] and \[A = 0\] or \[C = 0\]. For ellipse, \[{B^2} - 4AC < 0\] and \[A \ne C\]. For hyperbola, \[{B^2} - 4AC > 0\], For circle, \[{B^2} - 4AC < 0\] and \[A = C\].
Formula Used:
Distance between two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] is \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Complete step-by-step solution:
Let the coordinates of the variable point \[P\] be \[\left( {h,k} \right)\] and the coordinates of the two fixed points \[A\] and \[B\] be \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\].
Let us find the lengths of the line segments \[PA\] and \[PB\]
For \[PA\], \[{x_1} = h,{y_1} = k,{x_2} = a,{y_2} = b\]
So, \[PA = \sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} \]
For \[PB\], \[{x_1} = h,{y_1} = k,{x_2} = c,{y_2} = d\]
So, \[PB = \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
Given that \[PA + PB = 4\]
Substituting the values of \[PA\] and \[PB\] in the equation, we get
\[\sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} + \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} = 4\]
\[ \Rightarrow \sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} = 4 - \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
Squaring both sides, we get
\[ \Rightarrow {\left( {\sqrt {{{\left( {a - h} \right)}^2} + {{\left( {b - k} \right)}^2}} } \right)^2} = {\left( {4 - \sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} } \right)^2}\]
Use the identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {\left( {a - h} \right)^2} + {\left( {b - k} \right)^2} = 16 - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} + {\left( {c - h} \right)^2} + {\left( {d - k} \right)^2}\]
Again, use the identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {a^2} - 2ah + {h^2} + {b^2} - 2bk + {k^2} = 16 - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} + {c^2} - 2ch + {h^2} + {d^2} - 2dk + {k^2}\]
Cancel the terms \[{h^2}\] and \[{k^2}\] from both sides.
\[ \Rightarrow {a^2} - 2ah + {b^2} - 2bk = 16 - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} + {c^2} - 2ch + {d^2} - 2dk\]
\[ \Rightarrow {a^2} + {b^2} - {c^2} - {d^2} - 2ah - 2bk + 2ch + 2dk - 16 = - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
\[ \Rightarrow {a^2} + {b^2} - {c^2} - {d^2} + 2\left( {c - a} \right)h + 2\left( {d - b} \right)k - 16 = - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
The points \[A\left( {a,b} \right)\] and \[B\left( {c,d} \right)\] are fixed. It means \[a,b,c,d\] are constants.
Let \[{a^2} + {b^2} - {c^2} - {d^2} - 16 = m\], \[2\left( {c - a} \right) = p\] and \[2\left( {d - b} \right) = q\]
Then the equation becomes
\[m + ph + qk = - 8\sqrt {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \]
Squaring both sides, we get
\[ \Rightarrow {\left( {m + ph + qk} \right)^2} = 64\left\{ {{{\left( {c - h} \right)}^2} + {{\left( {d - k} \right)}^2}} \right\}\]
Use the formula \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {m^2} + {p^2}{h^2} + {q^2}{k^2} + 2mph + 2pqhk + 2mqk = 64\left( {{c^2} - 2ch + {h^2} + {d^2} - 2dk + {k^2}} \right)\]
\[ \Rightarrow {m^2} + {p^2}{h^2} + {q^2}{k^2} + 2mph + 2pqhk + 2mqk = 64{c^2} - 128ch + 64{h^2} + 64{d^2} - 128dk + 64{k^2}\]
Arrange the terms.
\[ \Rightarrow {p^2}{h^2} - 64{h^2} + 2pqhk + {q^2}{k^2} - 64{k^2} + 2mph + 128ch + 2mqk + 128dk + {m^2} - 64{c^2} - 64{d^2} = 0\]
\[ \Rightarrow \left( {{p^2} - 64} \right){h^2} + 2pqhk + \left( {{q^2} - 64} \right){k^2} + 2\left( {mp + 64c} \right)h + 2\left( {mq + 64d} \right)k + \left( {{m^2} - 64{c^2} - 64{d^2}} \right) = 0\]
Replacing \[h\] by \[x\] and \[k\] by \[y\], we get
\[ \Rightarrow \left( {{p^2} - 64} \right){x^2} + 2pqxy + \left( {{q^2} - 64} \right){y^2} + 2\left( {mp + 64c} \right)x + 2\left( {mq + 64d} \right)y + \left( {{m^2} - 64{c^2} - 64{d^2}} \right) = 0\]
This is the equation of the locus of \[P\left( {h,k} \right)\].
Comparing the equation of the locus with the general form of a conic \[A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\], we get \[A = {p^2} - 64\], \[B = 2pq\], \[C = {q^2} - 64\], \[D = 2\left( {mp + 64c} \right)\], \[E = 2\left( {mq + 64d} \right)\], \[F = {m^2} - 64{c^2} - 64{d^2}\]
Now, \[{B^2} - 4AC = {\left( {2pq} \right)^2} - 4\left( {{p^2} - 64} \right)\left( {{q^2} - 64} \right)\]
\[ = 4{p^2}{q^2} - 4{p^2}{q^2} + 256{p^2} + 256{q^2} - 16384\]
\[ = 256{p^2} + 256{q^2} - 16384\]
\[ = 256\left( {{p^2} + {q^2} - 64} \right)\]
We assumed that \[2\left( {c - a} \right) = p\] and \[2\left( {d - b} \right) = q\]
\[ = 256\left[ {{{\left\{ {2\left( {c - a} \right)} \right\}}^2} + {{\left\{ {2\left( {d - b} \right)} \right\}}^2} - 64} \right]\]
\[ = 256\left\{ {4{{\left( {c - a} \right)}^2} + 4{{\left( {d - b} \right)}^2} - 64} \right\}\]
\[ = 256\left[ {4\left\{ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2} - 16} \right\}} \right]\]
\[ = 1024\left\{ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2} - 16} \right\}\]
Now, it is given that \[AB < 4\]
\[ \Rightarrow \sqrt {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} < 4\]
\[ \Rightarrow {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} < 16\]
\[ \Rightarrow {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} - 16 < 0\]
So, \[{B^2} - 4AC < 0\] and \[A \ne C\], in general.
Thus, the equation represents an ellipse.
Hence, option B is correct.
Note: Every second degree equation in two variables represents a conic. Many students can’t remember the conditions for the equations to be of a parabola, an ellipse, a hyperbola and a circle. So, they can’t identify the equation of the conic. For parabola, \[{B^2} - 4AC = 0\] and \[A = 0\] or \[C = 0\]. For ellipse, \[{B^2} - 4AC < 0\] and \[A \ne C\]. For hyperbola, \[{B^2} - 4AC > 0\], For circle, \[{B^2} - 4AC < 0\] and \[A = C\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
