Four massless springs each of force constant \[k\] are attached to a mass $m$kept on a smooth plane as shown in figure. If the mass is displaced in the horizontal direction and released, its frequency of oscillation is:
A) $\dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{{4m}}} $
B) $\dfrac{1}{{2\pi }}\sqrt {\dfrac{{4k}}{m}} $
C) $\dfrac{1}{{2\pi }}\sqrt {\dfrac{{2k}}{{5m}}} $
D) $\dfrac{1}{{2\pi }}\sqrt {\dfrac{{5k}}{{2m}}} $
Answer
Verified
119.7k+ views
Hint: For the given question firstly, we have to find the spring equivalent spring constant of both the sides, that is the Left-Hand Side and the Right-Hand Side. After that combine both side’s equivalency in a single equivalency by adding them. Calculate the Time Period and the after that, calculation of reciprocal of Time period gives the required frequency of oscillations.
Complete step by step solution:
As we know that according to the strategy of equivalency of spring constant-
In general, given \[n\] springs added in series:
\[ \Rightarrow \dfrac{1}{{{k_{eq}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} + \dfrac{1}{{{k_3}}} + .... + \dfrac{1}{{{k_n}}}\]
In general, given \[n\] springs added in parallel
\[ \Rightarrow {k_{eq}} = {k_1} + {k_2} + {k_3} + .... + {k_n}\]
So according to the figure, firstly finding the equivalent parallel combination of the spring (that is in the left-hand side):
\[ \Rightarrow {k_{eq1}} = k + k\]
\[ \Rightarrow {k_{eq1}} = 2k\]
Then finding the equivalent series combination of the spring (that is in the right-hand side):
\[ \Rightarrow \dfrac{1}{{{k_{eq2}}}} = \dfrac{1}{k} + \dfrac{1}{k} = \dfrac{{1 + 1}}{k} = \dfrac{2}{k}\]
\[ \Rightarrow {k_{eq2}} = \dfrac{k}{2}\]
Now, total equivalent spring constant combining both the sides, is given by:
\[ \Rightarrow {k_{eq}} = 2k + \dfrac{k}{2} = \dfrac{{4k + k}}{2} = \dfrac{{5k}}{2}\]
Now, the time period of oscillation is given by:
\[T = 2\pi \sqrt {\dfrac{m}{{{k_{eq}}}}} \]
Now, we substitute equivalent spring constant as,
\[ \Rightarrow T = 2\pi \sqrt {\dfrac{{2m}}{{5k}}} \]
As we know that the frequency is given by
\[ \Rightarrow f = \dfrac{1}{T}\]
Now, we substitute the time period expression in the above equation,
\[ \Rightarrow f = \dfrac{1}{{2\pi \sqrt {\dfrac{{2m}}{{5k}}} }}\]
After simplification, we get
\[\therefore f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{5k}}{{2m}}} \]
Thus, option $(D)$ is the correct answer.
Note: When two springs are connected in series, the result is essentially a longer and flimsier spring. When a force is applied to the combined spring, the same force is applied to each individual spring. When two springs are connected in parallel, the result is essentially two springs working together. When a force is applied to the combined spring, the force applied on each individual spring is different.
Complete step by step solution:
As we know that according to the strategy of equivalency of spring constant-
In general, given \[n\] springs added in series:
\[ \Rightarrow \dfrac{1}{{{k_{eq}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} + \dfrac{1}{{{k_3}}} + .... + \dfrac{1}{{{k_n}}}\]
In general, given \[n\] springs added in parallel
\[ \Rightarrow {k_{eq}} = {k_1} + {k_2} + {k_3} + .... + {k_n}\]
So according to the figure, firstly finding the equivalent parallel combination of the spring (that is in the left-hand side):
\[ \Rightarrow {k_{eq1}} = k + k\]
\[ \Rightarrow {k_{eq1}} = 2k\]
Then finding the equivalent series combination of the spring (that is in the right-hand side):
\[ \Rightarrow \dfrac{1}{{{k_{eq2}}}} = \dfrac{1}{k} + \dfrac{1}{k} = \dfrac{{1 + 1}}{k} = \dfrac{2}{k}\]
\[ \Rightarrow {k_{eq2}} = \dfrac{k}{2}\]
Now, total equivalent spring constant combining both the sides, is given by:
\[ \Rightarrow {k_{eq}} = 2k + \dfrac{k}{2} = \dfrac{{4k + k}}{2} = \dfrac{{5k}}{2}\]
Now, the time period of oscillation is given by:
\[T = 2\pi \sqrt {\dfrac{m}{{{k_{eq}}}}} \]
Now, we substitute equivalent spring constant as,
\[ \Rightarrow T = 2\pi \sqrt {\dfrac{{2m}}{{5k}}} \]
As we know that the frequency is given by
\[ \Rightarrow f = \dfrac{1}{T}\]
Now, we substitute the time period expression in the above equation,
\[ \Rightarrow f = \dfrac{1}{{2\pi \sqrt {\dfrac{{2m}}{{5k}}} }}\]
After simplification, we get
\[\therefore f = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{5k}}{{2m}}} \]
Thus, option $(D)$ is the correct answer.
Note: When two springs are connected in series, the result is essentially a longer and flimsier spring. When a force is applied to the combined spring, the same force is applied to each individual spring. When two springs are connected in parallel, the result is essentially two springs working together. When a force is applied to the combined spring, the force applied on each individual spring is different.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line