
Four dice (Six-faced) are rolled. The number of possible outcomes in which at least one die shows $2$ is
1. $1296$
2. $625$
3. $671$
4. None of these
Answer
232.8k+ views
Hint: In this question, we are given that four dice are rolled and we have to find the number of outcomes that at least one die shows $2$. The first step is to find the total number of outcomes using the formula ${6^n}$ where $n = 4$. Now find the outcomes if none of the dice will show $2$ and subtract them to calculate the required outcomes.
Formula Used:
Number of outcomes when a die is rolled $ = {6^n}$
Here, $n$ is the number of dice rolled
Complete step by step Solution:
Given that, four dice are rolled
Total number of possible outcomes when four dice are rolled $ = {6^4} = 1296$
Let the condition be none of the dice will show $2$,
Then the outcomes will be ${5^4} = 625$
Therefore, the number of possible outcomes in which at least one die shows $2$ will be the difference between total outcomes and the outcomes that none of the dice will show $2$
$ = 1296 - 625$
$ = 671$
Hence, Option (3) is the correct answer i.e., $671$.
Hence, the correct option is 3.
Note: The key concept involved in solving this problem is a good knowledge of probability and outcomes. Students must know that to get the total number of outcomes, simply multiply the events together. For example, flipping a coin has two possible outcomes, whereas rolling a die has six possible outcomes. We can get the total number of outcomes for the sample space by multiplying them together.
Formula Used:
Number of outcomes when a die is rolled $ = {6^n}$
Here, $n$ is the number of dice rolled
Complete step by step Solution:
Given that, four dice are rolled
Total number of possible outcomes when four dice are rolled $ = {6^4} = 1296$
Let the condition be none of the dice will show $2$,
Then the outcomes will be ${5^4} = 625$
Therefore, the number of possible outcomes in which at least one die shows $2$ will be the difference between total outcomes and the outcomes that none of the dice will show $2$
$ = 1296 - 625$
$ = 671$
Hence, Option (3) is the correct answer i.e., $671$.
Hence, the correct option is 3.
Note: The key concept involved in solving this problem is a good knowledge of probability and outcomes. Students must know that to get the total number of outcomes, simply multiply the events together. For example, flipping a coin has two possible outcomes, whereas rolling a die has six possible outcomes. We can get the total number of outcomes for the sample space by multiplying them together.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

JEE Main 2025 28 Jan Shift 2 Maths Answer Key and Solutions

JEE Main 2025 24 Jan Shift 1 Question Paper with Solutions

Understanding Gauss Law in Physics

Understanding the Right Hand Thumb Rule in Physics

Other Pages
CBSE Class 10 Maths 2025 Set 1 (30/2/1) Question Paper & Solutions

CBSE Class 10 Maths Question Paper Set 2 430/1/2 2025 (Basic): PDF, Answers & Analysis

Surface Areas and Volumes Class 10 Maths Chapter 12 CBSE Notes - 2025-26

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

