
For a symmetrical distribution ${Q_1} = 25$, and ${Q_3} = 45$ (${Q_1}$, and ${Q_3}$ are the first and third quartiles), then find the median of the distribution.
A. $20$
B. $25$
C. $30$
D. $35$
Answer
161.4k+ views
Hint: In the given data, the values of the first and third quartiles of a symmetrical distribution are given. Then use the formula of the median of a symmetrical distribution that is consist of the first and third quartiles to reach the required answer.
Formula Used:
The median of a symmetrical distribution is: ${Q_2} = \dfrac{{{Q_1} + {Q_3}}}{2}$
Complete step by step solution:
Given:
The values of the first and third quartiles of a symmetrical distribution are ${Q_1} = 25$, and ${Q_3} = 45$ respectively.
Let’s calculate the median of the given distribution.
The value of second quartile is the median of the distribution.
Apply the formula of a median ${Q_2} = \dfrac{{{Q_1} + {Q_3}}}{2}$.
${Q_2} = \dfrac{{25 + 45}}{2}$
$ \Rightarrow {Q_2} = \dfrac{{70}}{2}$
$ \Rightarrow {Q_2} = 35$
Therefore, the median of the given symmetrical distribution is $35$.
Option ‘D’ is correct
Additional information
A symmetrical distribution occurs when variable values appear at regular intervals, and the mean, median, and mode frequently occur at the same point.
Note: Students often get confused about the formulas of the first, second and third quartiles. The second quartile is also called the median of the data set.
Following are the formula of the quartiles:
First quartile: ${Q_1} = \dfrac{1}{4}{\left( {n + 1} \right)^{th}}term$
Second quartile: ${Q_2} = \dfrac{1}{2}{\left( {n + 1} \right)^{th}}term$
Third quartile: ${Q_3} = \dfrac{3}{4}{\left( {n + 1} \right)^{th}}term$
Formula Used:
The median of a symmetrical distribution is: ${Q_2} = \dfrac{{{Q_1} + {Q_3}}}{2}$
Complete step by step solution:
Given:
The values of the first and third quartiles of a symmetrical distribution are ${Q_1} = 25$, and ${Q_3} = 45$ respectively.
Let’s calculate the median of the given distribution.
The value of second quartile is the median of the distribution.
Apply the formula of a median ${Q_2} = \dfrac{{{Q_1} + {Q_3}}}{2}$.
${Q_2} = \dfrac{{25 + 45}}{2}$
$ \Rightarrow {Q_2} = \dfrac{{70}}{2}$
$ \Rightarrow {Q_2} = 35$
Therefore, the median of the given symmetrical distribution is $35$.
Option ‘D’ is correct
Additional information
A symmetrical distribution occurs when variable values appear at regular intervals, and the mean, median, and mode frequently occur at the same point.
Note: Students often get confused about the formulas of the first, second and third quartiles. The second quartile is also called the median of the data set.
Following are the formula of the quartiles:
First quartile: ${Q_1} = \dfrac{1}{4}{\left( {n + 1} \right)^{th}}term$
Second quartile: ${Q_2} = \dfrac{1}{2}{\left( {n + 1} \right)^{th}}term$
Third quartile: ${Q_3} = \dfrac{3}{4}{\left( {n + 1} \right)^{th}}term$
Recently Updated Pages
How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Difference Between Acetic Acid and Glacial Acetic Acid: JEE Main 2024

Trending doubts
JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

Difference Between Pound and Kilogram | Weight Measurement Units

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

List of Fastest Century in IPL History

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
