
Find the value of the definite integral \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\].
A. \[ - 1\]
B. 2
C. \[1 + {e^{ - 1}}\]
D. None of these
Answer
233.1k+ views
Hint: Here, a definite integral is given. First, use the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\] and split the terms of the given integral. Then, solve the integrals by applying the integration formulas.
Formula Used:Integration Formula: \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\].
Let consider,
\[I = \int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_0^1 1 dx + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
Solve the first integral by applying the formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[I = \left[ x \right]_0^1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = \left( {1 - 0} \right) + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = 1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
But the second term \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] is not integrable.
Therefore, the value of the integral \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\] does not exists.
Option ‘D’ is correct
Note: Students often get confused and solve the second integral \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] by applying the integration formula \[\int {{e^x}} dx = {e^x}\] . Because of that, they get the value of the integrals as \[\int\limits_0^1 {{e^{ - {x^2}}}} dx = \dfrac{1}{e} - 1\] and \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx = 1 + \dfrac{1}{e} - 1 = \dfrac{1}{e}\]. But both values are wrong, so they get the wrong solution.
Formula Used:Integration Formula: \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\].
Let consider,
\[I = \int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_0^1 1 dx + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
Solve the first integral by applying the formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[I = \left[ x \right]_0^1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = \left( {1 - 0} \right) + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = 1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
But the second term \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] is not integrable.
Therefore, the value of the integral \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\] does not exists.
Option ‘D’ is correct
Note: Students often get confused and solve the second integral \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] by applying the integration formula \[\int {{e^x}} dx = {e^x}\] . Because of that, they get the value of the integrals as \[\int\limits_0^1 {{e^{ - {x^2}}}} dx = \dfrac{1}{e} - 1\] and \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx = 1 + \dfrac{1}{e} - 1 = \dfrac{1}{e}\]. But both values are wrong, so they get the wrong solution.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

