
Find the value of the definite integral \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\].
A. \[ - 1\]
B. 2
C. \[1 + {e^{ - 1}}\]
D. None of these
Answer
162.6k+ views
Hint: Here, a definite integral is given. First, use the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\] and split the terms of the given integral. Then, solve the integrals by applying the integration formulas.
Formula Used:Integration Formula: \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\].
Let consider,
\[I = \int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_0^1 1 dx + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
Solve the first integral by applying the formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[I = \left[ x \right]_0^1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = \left( {1 - 0} \right) + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = 1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
But the second term \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] is not integrable.
Therefore, the value of the integral \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\] does not exists.
Option ‘D’ is correct
Note: Students often get confused and solve the second integral \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] by applying the integration formula \[\int {{e^x}} dx = {e^x}\] . Because of that, they get the value of the integrals as \[\int\limits_0^1 {{e^{ - {x^2}}}} dx = \dfrac{1}{e} - 1\] and \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx = 1 + \dfrac{1}{e} - 1 = \dfrac{1}{e}\]. But both values are wrong, so they get the wrong solution.
Formula Used:Integration Formula: \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
The sum rule of the integration: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\].
Let consider,
\[I = \int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[I = \int\limits_0^1 1 dx + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
Solve the first integral by applying the formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[I = \left[ x \right]_0^1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = \left( {1 - 0} \right) + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
\[ \Rightarrow I = 1 + \int\limits_0^1 {{e^{ - {x^2}}}} dx\]
But the second term \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] is not integrable.
Therefore, the value of the integral \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx\] does not exists.
Option ‘D’ is correct
Note: Students often get confused and solve the second integral \[\int\limits_0^1 {{e^{ - {x^2}}}} dx\] by applying the integration formula \[\int {{e^x}} dx = {e^x}\] . Because of that, they get the value of the integrals as \[\int\limits_0^1 {{e^{ - {x^2}}}} dx = \dfrac{1}{e} - 1\] and \[\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} dx = 1 + \dfrac{1}{e} - 1 = \dfrac{1}{e}\]. But both values are wrong, so they get the wrong solution.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
