
Find the sum of an infinite series \[1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....\infty \].
A. \[\dfrac{7}{{16}}\]
B. \[\dfrac{5}{{16}}\]
C. \[\dfrac{{104}}{{64}}\]
D. \[\dfrac{{35}}{{16}}\]
Answer
233.1k+ views
Hint In the given question, the infinite series is given. We will divide the series by 5, and then subtract the new series from the original series. The terms of the new series are in geometric progression. So, by using the formula of the sum of infinite terms in geometric progression, we will find the value of the series.
Formula used
The sum of infinite terms in GP: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , \[\left| r \right| < 1\]
where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....\infty \] \[.......equation\left( 1 \right)\]
Divide the above series by 5.
\[\dfrac{S}{5} = \dfrac{1}{5} + \dfrac{4}{{{5^2}}} + \dfrac{7}{{{5^3}}} + \dfrac{{10}}{{{5^4}}} + .....\infty \] \[.......equation\left( 2 \right)\]
Subtract equation \[\left( 2 \right)\] from equation \[\left( 1 \right)\].
\[S - \dfrac{S}{5} = \left( {1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....\infty } \right) - \left( {\dfrac{1}{5} + \dfrac{4}{{{5^2}}} + \dfrac{7}{{{5^3}}} + \dfrac{{10}}{{{5^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of second bracket from the terms of first brackets with same denominator.
\[\dfrac{{4S}}{5} = 1 + \dfrac{{4 - 1}}{5} + \dfrac{{7 - 4}}{{{5^2}}} + \dfrac{{10 - 7}}{{{5^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + \dfrac{3}{5} + \dfrac{3}{{{5^2}}} + \dfrac{3}{{{5^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{1}{5} + \dfrac{1}{{{5^2}}} + \dfrac{1}{{{5^3}}}.....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = \dfrac{1}{5}\] and the common ratio is \[r = \dfrac{{\dfrac{1}{{{5^2}}}}}{{\dfrac{1}{5}}} = \dfrac{1}{5}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{{\dfrac{1}{5}}}{{\left( {1 - \dfrac{1}{5}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{{\dfrac{1}{5}}}{{\dfrac{4}{5}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{1}{4}} \right]\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + \dfrac{3}{4}\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = \dfrac{7}{4}\]
\[ \Rightarrow \]\[S = \dfrac{7}{4} \times \dfrac{5}{4}\]
\[ \Rightarrow \]\[S = \dfrac{{35}}{{16}}\]
Hence the correct option is option D.
Note: Students are often confused with the value of \[\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}}\] that whether \[\left( {\dfrac{{ac}}{{bd}}} \right)\] or \[\left( {\dfrac{{ad}}{{bc}}} \right)\]. But the correct formula is \[\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}} = \dfrac{{ad}}{{bc}}\].
Formula used
The sum of infinite terms in GP: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , \[\left| r \right| < 1\]
where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....\infty \] \[.......equation\left( 1 \right)\]
Divide the above series by 5.
\[\dfrac{S}{5} = \dfrac{1}{5} + \dfrac{4}{{{5^2}}} + \dfrac{7}{{{5^3}}} + \dfrac{{10}}{{{5^4}}} + .....\infty \] \[.......equation\left( 2 \right)\]
Subtract equation \[\left( 2 \right)\] from equation \[\left( 1 \right)\].
\[S - \dfrac{S}{5} = \left( {1 + \dfrac{4}{5} + \dfrac{7}{{{5^2}}} + \dfrac{{10}}{{{5^3}}} + .....\infty } \right) - \left( {\dfrac{1}{5} + \dfrac{4}{{{5^2}}} + \dfrac{7}{{{5^3}}} + \dfrac{{10}}{{{5^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of second bracket from the terms of first brackets with same denominator.
\[\dfrac{{4S}}{5} = 1 + \dfrac{{4 - 1}}{5} + \dfrac{{7 - 4}}{{{5^2}}} + \dfrac{{10 - 7}}{{{5^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + \dfrac{3}{5} + \dfrac{3}{{{5^2}}} + \dfrac{3}{{{5^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{1}{5} + \dfrac{1}{{{5^2}}} + \dfrac{1}{{{5^3}}}.....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = \dfrac{1}{5}\] and the common ratio is \[r = \dfrac{{\dfrac{1}{{{5^2}}}}}{{\dfrac{1}{5}}} = \dfrac{1}{5}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{{\dfrac{1}{5}}}{{\left( {1 - \dfrac{1}{5}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{{\dfrac{1}{5}}}{{\dfrac{4}{5}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + 3\left[ {\dfrac{1}{4}} \right]\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = 1 + \dfrac{3}{4}\]
\[ \Rightarrow \]\[\dfrac{{4S}}{5} = \dfrac{7}{4}\]
\[ \Rightarrow \]\[S = \dfrac{7}{4} \times \dfrac{5}{4}\]
\[ \Rightarrow \]\[S = \dfrac{{35}}{{16}}\]
Hence the correct option is option D.
Note: Students are often confused with the value of \[\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}}\] that whether \[\left( {\dfrac{{ac}}{{bd}}} \right)\] or \[\left( {\dfrac{{ad}}{{bc}}} \right)\]. But the correct formula is \[\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}} = \dfrac{{ad}}{{bc}}\].
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

