
Find $\dfrac{1}{x+1}+\dfrac{1}{2{{(x+1)}^{2}}}+\dfrac{1}{3{{(x+1)}^{3}}}+...\infty =$
A. ${{\log }_{e}}\left( 1+\dfrac{1}{x} \right)$
B. ${{\log }_{e}}\left( 1-\dfrac{1}{x} \right)$
C. ${{\log }_{e}}\left( \dfrac{x}{x+1} \right)$
Answer
163.8k+ views
Hint: In this question, we are to find the sum of the given series. For this, we need to apply the logarithmic series formula. By rewriting the series into the form of a logarithmic series, we can evaluate the sum of the given series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{x+1}+\dfrac{1}{2{{(x+1)}^{2}}}+\dfrac{1}{3{{(x+1)}^{3}}}+...\infty $
Rewriting the given series as
$\dfrac{1}{x+1}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{3}}}{3}+...\infty \text{ }...(1)$
But we have a logarithmic series as
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(2) \\
\end{align}$
So, by comparing (1) and (2), we get
$x=\dfrac{1}{x+1}$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& -{{\log }_{e}}(1-x)=-{{\log }_{e}}(1-\dfrac{1}{x+1}) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{x+1-1}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{x}{x+1} \right) \\
\end{align}$
Since there is a negative sign before the log function, we use the property,
$-\log \left( \dfrac{x}{y} \right)=\log \left( \dfrac{y}{x} \right)$
Then,
$\begin{align}
& -{{\log }_{e}}\left( \dfrac{x}{x+1} \right)={{\log }_{e}}\left( \dfrac{x+1}{x} \right) \\
& \Rightarrow {{\log }_{e}}\left( 1+\dfrac{1}{x} \right) \\
\end{align}$
Thus, the sum is
$\dfrac{1}{x+1}+\dfrac{1}{2{{(x+1)}^{2}}}+\dfrac{1}{3{{(x+1)}^{3}}}+...\infty ={{\log }_{e}}\left( 1+\dfrac{1}{x} \right)$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=\dfrac{1}{x+1}$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{x+1}+\dfrac{1}{2{{(x+1)}^{2}}}+\dfrac{1}{3{{(x+1)}^{3}}}+...\infty $
Rewriting the given series as
$\dfrac{1}{x+1}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{3}}}{3}+...\infty \text{ }...(1)$
But we have a logarithmic series as
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(2) \\
\end{align}$
So, by comparing (1) and (2), we get
$x=\dfrac{1}{x+1}$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& -{{\log }_{e}}(1-x)=-{{\log }_{e}}(1-\dfrac{1}{x+1}) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{x+1-1}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{x}{x+1} \right) \\
\end{align}$
Since there is a negative sign before the log function, we use the property,
$-\log \left( \dfrac{x}{y} \right)=\log \left( \dfrac{y}{x} \right)$
Then,
$\begin{align}
& -{{\log }_{e}}\left( \dfrac{x}{x+1} \right)={{\log }_{e}}\left( \dfrac{x+1}{x} \right) \\
& \Rightarrow {{\log }_{e}}\left( 1+\dfrac{1}{x} \right) \\
\end{align}$
Thus, the sum is
$\dfrac{1}{x+1}+\dfrac{1}{2{{(x+1)}^{2}}}+\dfrac{1}{3{{(x+1)}^{3}}}+...\infty ={{\log }_{e}}\left( 1+\dfrac{1}{x} \right)$
Option ‘A’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is the same type but the variable is different i.e., in the given series $x=\dfrac{1}{x+1}$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
