
Consider the function $f:\left( { - \infty ,\infty ,} \right) \to $ $\left( { - \infty ,\infty ,} \right)$ defined by $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ , $0 < a < 2$ . Which of the following is true.
A. ${\left( {2 + a} \right)^2}f''(1) - {\left( {2 - a} \right)^2}f''( - 1) = 0$
B. ${\left( {2 - a} \right)^2}f''(1) - {\left( {2 + a} \right)^2}f''( - 1) = 0$
C. $f'(1)f'( - 1) = {\left( {2 - a} \right)^2}$
D. $f'(1)f'( - 1) = - {\left( {2 + a} \right)^2}$
Answer
164.1k+ views
Hint: When we look to the options it is clear that we need to find the first derivative and then find the second derivative to get the required solution. We use differentiation properties to get simplified expressions.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
