
Consider the function $f:\left( { - \infty ,\infty ,} \right) \to $ $\left( { - \infty ,\infty ,} \right)$ defined by $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ , $0 < a < 2$ . Which of the following is true.
A. ${\left( {2 + a} \right)^2}f''(1) - {\left( {2 - a} \right)^2}f''( - 1) = 0$
B. ${\left( {2 - a} \right)^2}f''(1) - {\left( {2 + a} \right)^2}f''( - 1) = 0$
C. $f'(1)f'( - 1) = {\left( {2 - a} \right)^2}$
D. $f'(1)f'( - 1) = - {\left( {2 + a} \right)^2}$
Answer
186k+ views
Hint: When we look to the options it is clear that we need to find the first derivative and then find the second derivative to get the required solution. We use differentiation properties to get simplified expressions.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Recently Updated Pages
Electric Flux and Area Vector - Important Concepts for JEE

Clemmensen and Wolff Kishner Reduction Important Concepts and Tips for JEE

All About Relations and Functions Complete Relation for JEE

Chain and Position Isomerism Important Concepts and Tips for JEE

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

Froth Flotation Principle and Process Important Concepts and Tips for JEE

Trending doubts
Displacement and Velocity-Time Graphs: Concepts, Differences & Application

Average and RMS Value in Physics: Formula, Comparison & Application

Centre of Mass of Hollow and Solid Hemisphere Explained

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

JEE Main 2025 Exam Pattern (Revised)

Other Pages
JEE Advanced 2022 Paper 1 with Solutions PDF

Cbse Class 11 Maths Notes Chapter 4 Complex Numbers And Quadratic Equations

JEE Advanced 2026 Notes

Ganesh Chaturthi 2025 Celebration: Date, History & Rituals

Independence Day 2025: Meaning, History, and Fun Ways to Celebrate

Important Days and Dates in August
