
Consider the function $f:\left( { - \infty ,\infty ,} \right) \to $ $\left( { - \infty ,\infty ,} \right)$ defined by $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ , $0 < a < 2$ . Which of the following is true.
A. ${\left( {2 + a} \right)^2}f''(1) - {\left( {2 - a} \right)^2}f''( - 1) = 0$
B. ${\left( {2 - a} \right)^2}f''(1) - {\left( {2 + a} \right)^2}f''( - 1) = 0$
C. $f'(1)f'( - 1) = {\left( {2 - a} \right)^2}$
D. $f'(1)f'( - 1) = - {\left( {2 + a} \right)^2}$
Answer
232.8k+ views
Hint: When we look to the options it is clear that we need to find the first derivative and then find the second derivative to get the required solution. We use differentiation properties to get simplified expressions.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

