
Consider the function $f:\left( { - \infty ,\infty ,} \right) \to $ $\left( { - \infty ,\infty ,} \right)$ defined by $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ , $0 < a < 2$ . Which of the following is true.
A. ${\left( {2 + a} \right)^2}f''(1) - {\left( {2 - a} \right)^2}f''( - 1) = 0$
B. ${\left( {2 - a} \right)^2}f''(1) - {\left( {2 + a} \right)^2}f''( - 1) = 0$
C. $f'(1)f'( - 1) = {\left( {2 - a} \right)^2}$
D. $f'(1)f'( - 1) = - {\left( {2 + a} \right)^2}$
Answer
232.8k+ views
Hint: When we look to the options it is clear that we need to find the first derivative and then find the second derivative to get the required solution. We use differentiation properties to get simplified expressions.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Formula Used:
Quotient rule: $\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
Complete step by step solution:
$f(x)$ is given in the question $f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$ hence for finding the derivative we will simplify
$f(x)$which will help us to differentiate the function in the easiest way.
$f\left( x \right) = \dfrac{{\left[ {{x^2} - ax + 1} \right]}}{{\left[ {{x^2} + ax + 1} \right]}}$
For simplifying lets add and subtract $ax$ in the numerator as well as denominator.
$f(x) = \dfrac{{\left( {{x^2} + ax + 1} \right) - 2ax}}{{{x^2} + ax + 1}}$
$f(x) = 1 - \dfrac{{2ax}}{{{x^2} + ax + 1}}$
Now differentiating $f(x)$ for the First time with respect to $x$
$\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)'=\dfrac{g\left(x\right)f'\left(x\right)-g'\left(x\right)f\left(x\right)}{g\left(x\right)^2}$
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
$ = - \left[ {\dfrac{{ - 2a{x^2} + 2a}}{{{{({x^2} + ax + 1)}^2}}}} \right]$
$ = 2a\left[ {\dfrac{{{x^2} - 1}}{{{{({x^2} + ax + 1)}^2}}}} \right]$ ---------- (i)
Now calculating the second derivative of $f(x)$where we will be differentiating $f'(x)$ again with respect to $x$ .
$f'(x) = - \left[ {\dfrac{{\left( {{x^2} + ax + 1} \right)2a - 2ax(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^2}}}} \right]$
Differentiating $f(x)$ using The Quotient Rule.
$f''(x) = 2a\left[ {\dfrac{{{{\left( {{x^2} + ax + 1} \right)}^2}2x - ({x^2} - 1)2\left( {{x^2} + ax + 1} \right)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^4}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$
$f''(x) = 2a\left[ {\dfrac{{2x\left( {{x^2} + ax + 1} \right) - 2({x^2} - 1)(2x + a)}}{{{{\left( {{x^2} + ax + 1} \right)}^3}}}} \right]$ -------- (ii)
Now in $f''(x)$ substituting the values.
$f''\left( 1 \right) = \dfrac{{4a\left( {a + 2} \right)}}{{{{\left( {a + 2} \right)}^3}}}= \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$f''\left( { - 1} \right) = \dfrac{{ - 4a\left( {2 - a} \right)}}{{{{\left( {2 - a} \right)}^3}}}$
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
Now equation (iii) and (iv) can be simplified as –
Equation (iii) will be simplified as –
$f''\left( 1 \right) = \dfrac{{4a}}{{{{\left( {a + 2} \right)}^2}}}$ ------ (iii)
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$
Equation (iv) will be simplified as –
$f''\left( { - 1} \right) = \dfrac{{ - 4a}}{{{{\left( {2 - a} \right)}^2}}}$ ------ (iv)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
From both the simplified equation we will equate each other –
$4a = f''\left( 1 \right){\left( {a + 2} \right)^2}$------ (v)
$4a = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$------ (vi)
$f''\left( 1 \right){\left( {a + 2} \right)^2} = - {\left( {2 - a} \right)^2}f''\left( { - 1} \right)$
$f''\left( 1 \right){\left( {a + 2} \right)^2} + {\left( {a - 2} \right)^2}f''\left( { - 1} \right) = 0$
$f''\left( 1 \right){\left( {2 + a} \right)^2} + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$
Option ‘A’ is correct
Note: To solve the given question we have to find $f’’(x)$ and calculate the second order derivative at $ x = 1$ and $x = -1$. Then substitute the values and form an equation to get the required solution.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

