
\[ABCD\] is a rhombus. Its diagonals \[AC\] and \[BD\] intersect at the point \[M\] and satisfy \[BD=2AC\]. If the points \[D\] and \[M\] represents the complex numbers \[1+i\] and \[2-i\] respectively, then \[A\] represents the complex number
A. $3-\dfrac{1}{2}i$ or $1-\dfrac{3}{2}i$
B. $\dfrac{3}{2}-i$ or $\dfrac{1}{2}-3i$
C. $\dfrac{1}{2}-i$ or $1-\dfrac{1}{2}i$
D. None of these
Answer
232.8k+ views
Hint: In this question, we have to find the vertex of a rhombus. A required vertex is a complex number. By using the given diagonals and the midpoint, the required complex vertex is calculated.
Formula Used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Complete step by step solution: Given that,
The diagonals of the rhombus \[ABCD\] are related by \[BD=2AC\text{ }...(1)\]
Where \[AC\] and \[BD\] are the diagonals and \[M\] is the intersecting point of these diagonals.
So, \[M\] be the midpoint of the diagonals.
Then, we can write
\[\begin{align}
& BD=BM+DM \\
& \because DM=BM \\
& BD=2DM\text{ }...(2) \\
\end{align}\]
And
\[\begin{align}
& AC=AM+CM \\
& \because AM=CM \\
& AC=2AM\text{ }...(3) \\
\end{align}\]
From (1), (2), and (3), we can write
\[\begin{align}
& 2DM=2(2AM) \\
& DM=2AM \\
\end{align}\]
Then, their magnitudes are
$\begin{align}
& \left| DM \right|=2\left| AM \right| \\
& \Rightarrow \left| (2-i)-(1+i) \right|=2\left| (x+iy)-(2-i) \right| \\
& \Rightarrow \left| 1-2i \right|=2\left| (x-2)+i(y+1) \right| \\
\end{align}$
But we have $\left| x+iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$
So,
$\begin{align}
& \sqrt{{{1}^{2}}+{{(-2)}^{2}}}=2\sqrt{{{(x-2)}^{2}}+{{(y+1)}^{2}}} \\
& \sqrt{5}=2\sqrt{{{(x-2)}^{2}}+{{(y+1)}^{2}}} \\
\end{align}$
Squaring on both sides, we get
$5=4\left[ {{(x-2)}^{2}}+{{(y+1)}^{2}} \right]\text{ }...(5)$
The slope of $DM$ is
$\begin{align}
& {{m}_{1}}=\dfrac{{{y}_{2}}-{{y}_{2}}}{{{x}_{2}}-{{x}_{1}}} \\
& \text{ }=\dfrac{-1-1}{2-1} \\
& \text{ }=-2 \\
\end{align}$
Since the diagonals bisect each other, they are perpendicular to each other. I.e., $DM\bot AM$
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow -2\times \dfrac{y+1}{x-2}=-1 \\
& \Rightarrow 2(y+1)=(x-2)\text{ }...(6) \\
\end{align}$
From (5) and (6), we get
$\begin{align}
& 5=4\left[ {{(2(y+1))}^{2}}+{{(y+1)}^{2}} \right] \\
& \Rightarrow 5=4\left[ 4{{(y+1)}^{2}}+{{(y+1)}^{2}} \right] \\
& \Rightarrow 5=4\left[ 5{{(y+1)}^{2}} \right] \\
& \Rightarrow {{(y+1)}^{2}}=\dfrac{1}{4} \\
& \Rightarrow y+1=\pm \dfrac{1}{2} \\
& \Rightarrow y=-\dfrac{1}{2};-\dfrac{3}{2} \\
\end{align}$
Then,
\[\begin{align}
& y=-\dfrac{1}{2}; \\
& x-2=2(y+1) \\
& \Rightarrow x-2=2(-\dfrac{1}{2}+1) \\
& \Rightarrow x=3 \\
\end{align}\]
\[\begin{align}
& y=-\dfrac{3}{2}; \\
& x-2=2(y+1) \\
& \Rightarrow x-2=2(-\dfrac{3}{2}+1) \\
& \Rightarrow x-2=-1 \\
& \Rightarrow x=1 \\
\end{align}\]
Therefore, the required complex numbers are $(3-\dfrac{1}{2}i)$ or $(1-\dfrac{3}{2}i)$
Option ‘A’ is correct
Note: Here we need to remember that, the diagonals are perpendicular to each other. So, we can able to find the required vertex.
Formula Used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Complete step by step solution: Given that,
The diagonals of the rhombus \[ABCD\] are related by \[BD=2AC\text{ }...(1)\]
Where \[AC\] and \[BD\] are the diagonals and \[M\] is the intersecting point of these diagonals.
So, \[M\] be the midpoint of the diagonals.
Then, we can write
\[\begin{align}
& BD=BM+DM \\
& \because DM=BM \\
& BD=2DM\text{ }...(2) \\
\end{align}\]
And
\[\begin{align}
& AC=AM+CM \\
& \because AM=CM \\
& AC=2AM\text{ }...(3) \\
\end{align}\]
From (1), (2), and (3), we can write
\[\begin{align}
& 2DM=2(2AM) \\
& DM=2AM \\
\end{align}\]
Then, their magnitudes are
$\begin{align}
& \left| DM \right|=2\left| AM \right| \\
& \Rightarrow \left| (2-i)-(1+i) \right|=2\left| (x+iy)-(2-i) \right| \\
& \Rightarrow \left| 1-2i \right|=2\left| (x-2)+i(y+1) \right| \\
\end{align}$
But we have $\left| x+iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$
So,
$\begin{align}
& \sqrt{{{1}^{2}}+{{(-2)}^{2}}}=2\sqrt{{{(x-2)}^{2}}+{{(y+1)}^{2}}} \\
& \sqrt{5}=2\sqrt{{{(x-2)}^{2}}+{{(y+1)}^{2}}} \\
\end{align}$
Squaring on both sides, we get
$5=4\left[ {{(x-2)}^{2}}+{{(y+1)}^{2}} \right]\text{ }...(5)$
The slope of $DM$ is
$\begin{align}
& {{m}_{1}}=\dfrac{{{y}_{2}}-{{y}_{2}}}{{{x}_{2}}-{{x}_{1}}} \\
& \text{ }=\dfrac{-1-1}{2-1} \\
& \text{ }=-2 \\
\end{align}$
Since the diagonals bisect each other, they are perpendicular to each other. I.e., $DM\bot AM$
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow -2\times \dfrac{y+1}{x-2}=-1 \\
& \Rightarrow 2(y+1)=(x-2)\text{ }...(6) \\
\end{align}$
From (5) and (6), we get
$\begin{align}
& 5=4\left[ {{(2(y+1))}^{2}}+{{(y+1)}^{2}} \right] \\
& \Rightarrow 5=4\left[ 4{{(y+1)}^{2}}+{{(y+1)}^{2}} \right] \\
& \Rightarrow 5=4\left[ 5{{(y+1)}^{2}} \right] \\
& \Rightarrow {{(y+1)}^{2}}=\dfrac{1}{4} \\
& \Rightarrow y+1=\pm \dfrac{1}{2} \\
& \Rightarrow y=-\dfrac{1}{2};-\dfrac{3}{2} \\
\end{align}$
Then,
\[\begin{align}
& y=-\dfrac{1}{2}; \\
& x-2=2(y+1) \\
& \Rightarrow x-2=2(-\dfrac{1}{2}+1) \\
& \Rightarrow x=3 \\
\end{align}\]
\[\begin{align}
& y=-\dfrac{3}{2}; \\
& x-2=2(y+1) \\
& \Rightarrow x-2=2(-\dfrac{3}{2}+1) \\
& \Rightarrow x-2=-1 \\
& \Rightarrow x=1 \\
\end{align}\]
Therefore, the required complex numbers are $(3-\dfrac{1}{2}i)$ or $(1-\dfrac{3}{2}i)$
Option ‘A’ is correct
Note: Here we need to remember that, the diagonals are perpendicular to each other. So, we can able to find the required vertex.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

