
A satellite which is geostationary in a particular orbit is taken to another orbit. Its distance from the center of the earth in a new orbit is 2 times than that of the earlier orbit. The time period in the 2nd orbit is given by-
(a) 4.8 hours
(b) \[48\sqrt 2 \] hours
(c) 24 hours
(d) \[24\sqrt 2 \] hours
Answer
221.4k+ views
Hint:
1. Kepler’s 3rd law of planetary motion gives direct proportionality relation between radius of the orbit and approximate time taken by the planet to complete 1 revolution.
2. Time period of revolution of the geostationary satellite is T= 24hrs Here, in question, there is no mention of Mass and other parameters so we should not think along gravitational force direction.
Formula Used:
According to Kepler’s 3rd law, for a given orbit around its Sun: $\dfrac{{{T^2}}}{{{R^3}}} = $ constant …… (1)
Where,
T is time period of revolution
R is radius of the circular orbit or path followed
Complete step by step answer:
Given:
1.Radius of the geostationary satellite: R where, R is radius of earth
Let, the time period of geostationary satellite: T
Let, New radius for the satellite: ${R_{new}} = 2R$ …… (a)
Let, new time period of the satellite in shifted orbit be: ${T_{new}}$
To find: New time period of revolution ${T_{new}}$
Step 1:
From equation (1) we know initially: $\dfrac{{{T^2}}}{{{R^3}}} = $ k …… (2)
where, k is constant
Step 2:
Similarly, Kepler’s 3rd law is valid for new orbit as well.
So, using equation (1) for new orbit we can again say: ${({T_{new}})^2} = k.{({R_{new}})^3}$ …… (3)
Step 3:
Dividing equation (2) by equation (3), we get-
$\dfrac{{{{(T)}^2}}}{{{{({T_{new}})}^2}}} = \dfrac{{k.{{(R)}^3}}}{{k.{{({R_{new}})}^3}}}$ …… (4)
Step 4:
From the hint we know, the time period of revolution is T=24 hours for geostationary satellites.
Using above fact, and substituting value from equation (a) in equation (4) we get-
$
\Rightarrow \dfrac{{{{(T)}^2}}}{{{{({T_{new}})}^2}}} = \dfrac{{k.{{(R)}^3}}}{{k.{{(2R)}^3}}} \\
\Rightarrow \dfrac{{{{(24)}^2}}}{{{{({T_{new}})}^2}}} = \dfrac{1}{8} \Rightarrow {(24)^2} \times 8 = {({T_{new}})^2} \\
\Rightarrow {T_{new}} = 24 \times 2\sqrt 2 \\
$
Final Answer
(b) \[48\sqrt 2 \] hours
Note: New time period is different than 24 hours. Hence the satellite is no more geo-stationary, for a satellite to be geo-stationary its time period should be the same as time taken for earth to rotate about its axis i.e 24hrs.
1. Kepler’s 3rd law of planetary motion gives direct proportionality relation between radius of the orbit and approximate time taken by the planet to complete 1 revolution.
2. Time period of revolution of the geostationary satellite is T= 24hrs Here, in question, there is no mention of Mass and other parameters so we should not think along gravitational force direction.
Formula Used:
According to Kepler’s 3rd law, for a given orbit around its Sun: $\dfrac{{{T^2}}}{{{R^3}}} = $ constant …… (1)
Where,
T is time period of revolution
R is radius of the circular orbit or path followed
Complete step by step answer:
Given:
1.Radius of the geostationary satellite: R where, R is radius of earth
Let, the time period of geostationary satellite: T
Let, New radius for the satellite: ${R_{new}} = 2R$ …… (a)
Let, new time period of the satellite in shifted orbit be: ${T_{new}}$
To find: New time period of revolution ${T_{new}}$
Step 1:
From equation (1) we know initially: $\dfrac{{{T^2}}}{{{R^3}}} = $ k …… (2)
where, k is constant
Step 2:
Similarly, Kepler’s 3rd law is valid for new orbit as well.
So, using equation (1) for new orbit we can again say: ${({T_{new}})^2} = k.{({R_{new}})^3}$ …… (3)
Step 3:
Dividing equation (2) by equation (3), we get-
$\dfrac{{{{(T)}^2}}}{{{{({T_{new}})}^2}}} = \dfrac{{k.{{(R)}^3}}}{{k.{{({R_{new}})}^3}}}$ …… (4)
Step 4:
From the hint we know, the time period of revolution is T=24 hours for geostationary satellites.
Using above fact, and substituting value from equation (a) in equation (4) we get-
$
\Rightarrow \dfrac{{{{(T)}^2}}}{{{{({T_{new}})}^2}}} = \dfrac{{k.{{(R)}^3}}}{{k.{{(2R)}^3}}} \\
\Rightarrow \dfrac{{{{(24)}^2}}}{{{{({T_{new}})}^2}}} = \dfrac{1}{8} \Rightarrow {(24)^2} \times 8 = {({T_{new}})^2} \\
\Rightarrow {T_{new}} = 24 \times 2\sqrt 2 \\
$
Final Answer
(b) \[48\sqrt 2 \] hours
Note: New time period is different than 24 hours. Hence the satellite is no more geo-stationary, for a satellite to be geo-stationary its time period should be the same as time taken for earth to rotate about its axis i.e 24hrs.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

