
A point on parabola ${y^2} = 18x$ at which the ordinate increases at twice the rate of the abscissa is:
\[
A.\left( {\dfrac{9}{8},\dfrac{9}{2}} \right) \\
B.\left( {2, - 4} \right) \\
C.\left( {\dfrac{{ - 9}}{8},\dfrac{9}{2}} \right) \\
D.\left( {2,4} \right) \\
\]
Answer
219k+ views
Hint: Differentiate the given curve equation and equate with the curve equation to find the points.
Given that:
Curve equation ${y^2} = 18x$
Ordinate increases twice the abscissa
So, $\dfrac{{dy}}{{dx}} = 2$ -- (1)
Differentiating the given parabola equation we get
$
2ydy = 18dx \\
\dfrac{{dy}}{{dx}} = \dfrac{{18}}{{2y}} \\
$ --- (2)
From equation 1 and 2, we have
$
\dfrac{{18}}{{2y}} = 2 \\
y = \dfrac{9}{2} \\
$
Substituting the value of $y$ obtained in the given curve equation:
$
\Rightarrow {y^2} = 18x \\
\Rightarrow \dfrac{{81}}{4} = 18x \\
\Rightarrow x = \dfrac{9}{8} \\
$
Hence, the point is $\left( {\dfrac{9}{8},\dfrac{9}{2}} \right)$
Correct answer is option A.
Note:The following curve given in the question represents a parabola about x-axis. The parabola is the locus of points in that plane that are equidistant from both the directrix and the focus.
Given that:
Curve equation ${y^2} = 18x$
Ordinate increases twice the abscissa
So, $\dfrac{{dy}}{{dx}} = 2$ -- (1)
Differentiating the given parabola equation we get
$
2ydy = 18dx \\
\dfrac{{dy}}{{dx}} = \dfrac{{18}}{{2y}} \\
$ --- (2)
From equation 1 and 2, we have
$
\dfrac{{18}}{{2y}} = 2 \\
y = \dfrac{9}{2} \\
$
Substituting the value of $y$ obtained in the given curve equation:
$
\Rightarrow {y^2} = 18x \\
\Rightarrow \dfrac{{81}}{4} = 18x \\
\Rightarrow x = \dfrac{9}{8} \\
$
Hence, the point is $\left( {\dfrac{9}{8},\dfrac{9}{2}} \right)$
Correct answer is option A.
Note:The following curve given in the question represents a parabola about x-axis. The parabola is the locus of points in that plane that are equidistant from both the directrix and the focus.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
Understanding Average and RMS Value in Electrical Circuits

Common Ion Effect: Concept, Applications, and Problem-Solving

NCERT Solutions For Class 11 Maths Chapter 13 Statistics - 2025-26

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

