
A physical quantity $P$ is described by the relation $p = {a^{\dfrac{1}{2}}}{b^2}{c^3}{d^{ - 4}}$. If the relative errors in the measurement of $a,b,c$and $d$respectively $2,1,3$and $5\% $, then the relative error in $P$ will be:
A. $8\% $
B. $25\% $
C. $12\% $
D. $32\% $
Answer
147.6k+ views
Hint Calculate the relative error by multiplying the powers of each of the variables with their percentage errors and adding their individual values.
Complete step by step answer
Percent error is calculated by dividing the difference between measured and known value with the known value, multiplied by $100\% $
Relative error is connected with the notion of correct significant digits or correct significant figures. The significant digits in a number are the first nonzero digit and all succeeding digits.
It gives us an idea about the size of the error in a particular physical quantity. The relative error does not have a unit because it is a ratio of the same physical quantity. Since it is a proportion, so we can express it as a percentage by multiplying the relative error by $100\% $
On the other hand absolute error is just the difference between the measured value and the true value unlike the relative error which is a ratio. So the absolute error has a unit.
The relative error in $P$ is given as
$
\dfrac{{\Delta P}}{P} = \dfrac{1}{2}\dfrac{{\Delta a}}{a} + 2\dfrac{{\Delta b}}{b} + 3\dfrac{{\Delta c}}{c} + 4\dfrac{{\Delta d}}{d} \\
\Rightarrow \dfrac{{\Delta P}}{P} = \left( {\dfrac{1}{2} \times 2} \right) + \left( {2 \times 1} \right) + \left( {3 \times 3} \right) + \left( {4 \times 5} \right) \\
\Rightarrow \dfrac{{\Delta P}}{P} = (1 + 2 + 9 + 20) \\
\Rightarrow \dfrac{{\Delta P}}{P} = 32\% \\
$
Therefore the relative error in $P$ is $32\% $
So, the correct answer is D.
Note Relative error has two features- Its value becomes undefined when the true value of the variable is zero.
-Relative error is only applicable when measured on a ratio scale.
Complete step by step answer
Percent error is calculated by dividing the difference between measured and known value with the known value, multiplied by $100\% $
Relative error is connected with the notion of correct significant digits or correct significant figures. The significant digits in a number are the first nonzero digit and all succeeding digits.
It gives us an idea about the size of the error in a particular physical quantity. The relative error does not have a unit because it is a ratio of the same physical quantity. Since it is a proportion, so we can express it as a percentage by multiplying the relative error by $100\% $
On the other hand absolute error is just the difference between the measured value and the true value unlike the relative error which is a ratio. So the absolute error has a unit.
The relative error in $P$ is given as
$
\dfrac{{\Delta P}}{P} = \dfrac{1}{2}\dfrac{{\Delta a}}{a} + 2\dfrac{{\Delta b}}{b} + 3\dfrac{{\Delta c}}{c} + 4\dfrac{{\Delta d}}{d} \\
\Rightarrow \dfrac{{\Delta P}}{P} = \left( {\dfrac{1}{2} \times 2} \right) + \left( {2 \times 1} \right) + \left( {3 \times 3} \right) + \left( {4 \times 5} \right) \\
\Rightarrow \dfrac{{\Delta P}}{P} = (1 + 2 + 9 + 20) \\
\Rightarrow \dfrac{{\Delta P}}{P} = 32\% \\
$
Therefore the relative error in $P$ is $32\% $
So, the correct answer is D.
Note Relative error has two features- Its value becomes undefined when the true value of the variable is zero.
-Relative error is only applicable when measured on a ratio scale.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
