
A particle performing SHM has a maximum velocity $20cm/s$ and maximum acceleration $80cm/{s^2}$ . Its amplitude will be:
(A) $10cm$
(B) $2cm$
(C) $5cm$
(D) $8cm$
Answer
197.1k+ views
Hint The maximum velocity of a particle in simple harmonic motion is given by $v = r\omega $ and the maximum acceleration of a particle in simple harmonic motion is given by $a = r{\omega ^2}$ . Divide one by the other and find the value $\omega $ . Use this value in either of the equations to find the value of the amplitude of the particle in simple harmonic motion.
Complete Step by step answer
Let the maximum velocity of the particle in simple harmonic motion be $v$ . Let the maximum acceleration of the particle be $a$ . Let the amplitude of the particle be $r$ . Let $\omega $ be the frequency of the particle executing simple harmonic motion. It is given in the question that the maximum velocity of the particle is $20cm/s$ and the maximum acceleration of the particle is $80cm/{s^2}$ .
The maximum velocity of a particle executing simple harmonic motion is given by
$v = r\omega $
Substituting the value of maximum velocity, we get
$20 = r\omega $
The maximum acceleration of a particle executing simple harmonic motion is given by
$a = r{\omega ^2}$
Substituting the maximum value of acceleration, we get
$80 = r{\omega ^2}$
Dividing the above equation for maximum acceleration by the already written equation for maximum velocity, we get
$\dfrac{{80}}{{20}} = \omega $
$ \Rightarrow \omega = 4Hz$
Substituting this value of frequency into the equation for maximum velocity, we get
$20 = r \times 4$
By cross multiplication, we get
$r = \dfrac{{20}}{4}$
$ \Rightarrow r = 5cm$
That is, the maximum amplitude calculated is $5cm$ .
Hence, option (C) is the correct option.
Note
Simple harmonic motion is a type of periodic motion. In simple harmonic motion, the amplitude of a particle will also be its maximum displacement from the mean position of the particle. The particle will have maximum velocity when it is at the mean position and the particle will have maximum acceleration when it is at its extreme positions.
Complete Step by step answer
Let the maximum velocity of the particle in simple harmonic motion be $v$ . Let the maximum acceleration of the particle be $a$ . Let the amplitude of the particle be $r$ . Let $\omega $ be the frequency of the particle executing simple harmonic motion. It is given in the question that the maximum velocity of the particle is $20cm/s$ and the maximum acceleration of the particle is $80cm/{s^2}$ .
The maximum velocity of a particle executing simple harmonic motion is given by
$v = r\omega $
Substituting the value of maximum velocity, we get
$20 = r\omega $
The maximum acceleration of a particle executing simple harmonic motion is given by
$a = r{\omega ^2}$
Substituting the maximum value of acceleration, we get
$80 = r{\omega ^2}$
Dividing the above equation for maximum acceleration by the already written equation for maximum velocity, we get
$\dfrac{{80}}{{20}} = \omega $
$ \Rightarrow \omega = 4Hz$
Substituting this value of frequency into the equation for maximum velocity, we get
$20 = r \times 4$
By cross multiplication, we get
$r = \dfrac{{20}}{4}$
$ \Rightarrow r = 5cm$
That is, the maximum amplitude calculated is $5cm$ .
Hence, option (C) is the correct option.
Note
Simple harmonic motion is a type of periodic motion. In simple harmonic motion, the amplitude of a particle will also be its maximum displacement from the mean position of the particle. The particle will have maximum velocity when it is at the mean position and the particle will have maximum acceleration when it is at its extreme positions.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Geostationary vs Geosynchronous Satellites: Definitions, Differences, Uses

Complex Numbers - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Inertial and Non-Inertial Frame of Reference: Definition, Differences & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26
