
A particle performing SHM has a maximum velocity $20cm/s$ and maximum acceleration $80cm/{s^2}$ . Its amplitude will be:
(A) $10cm$
(B) $2cm$
(C) $5cm$
(D) $8cm$
Answer
145.5k+ views
Hint The maximum velocity of a particle in simple harmonic motion is given by $v = r\omega $ and the maximum acceleration of a particle in simple harmonic motion is given by $a = r{\omega ^2}$ . Divide one by the other and find the value $\omega $ . Use this value in either of the equations to find the value of the amplitude of the particle in simple harmonic motion.
Complete Step by step answer
Let the maximum velocity of the particle in simple harmonic motion be $v$ . Let the maximum acceleration of the particle be $a$ . Let the amplitude of the particle be $r$ . Let $\omega $ be the frequency of the particle executing simple harmonic motion. It is given in the question that the maximum velocity of the particle is $20cm/s$ and the maximum acceleration of the particle is $80cm/{s^2}$ .
The maximum velocity of a particle executing simple harmonic motion is given by
$v = r\omega $
Substituting the value of maximum velocity, we get
$20 = r\omega $
The maximum acceleration of a particle executing simple harmonic motion is given by
$a = r{\omega ^2}$
Substituting the maximum value of acceleration, we get
$80 = r{\omega ^2}$
Dividing the above equation for maximum acceleration by the already written equation for maximum velocity, we get
$\dfrac{{80}}{{20}} = \omega $
$ \Rightarrow \omega = 4Hz$
Substituting this value of frequency into the equation for maximum velocity, we get
$20 = r \times 4$
By cross multiplication, we get
$r = \dfrac{{20}}{4}$
$ \Rightarrow r = 5cm$
That is, the maximum amplitude calculated is $5cm$ .
Hence, option (C) is the correct option.
Note
Simple harmonic motion is a type of periodic motion. In simple harmonic motion, the amplitude of a particle will also be its maximum displacement from the mean position of the particle. The particle will have maximum velocity when it is at the mean position and the particle will have maximum acceleration when it is at its extreme positions.
Complete Step by step answer
Let the maximum velocity of the particle in simple harmonic motion be $v$ . Let the maximum acceleration of the particle be $a$ . Let the amplitude of the particle be $r$ . Let $\omega $ be the frequency of the particle executing simple harmonic motion. It is given in the question that the maximum velocity of the particle is $20cm/s$ and the maximum acceleration of the particle is $80cm/{s^2}$ .
The maximum velocity of a particle executing simple harmonic motion is given by
$v = r\omega $
Substituting the value of maximum velocity, we get
$20 = r\omega $
The maximum acceleration of a particle executing simple harmonic motion is given by
$a = r{\omega ^2}$
Substituting the maximum value of acceleration, we get
$80 = r{\omega ^2}$
Dividing the above equation for maximum acceleration by the already written equation for maximum velocity, we get
$\dfrac{{80}}{{20}} = \omega $
$ \Rightarrow \omega = 4Hz$
Substituting this value of frequency into the equation for maximum velocity, we get
$20 = r \times 4$
By cross multiplication, we get
$r = \dfrac{{20}}{4}$
$ \Rightarrow r = 5cm$
That is, the maximum amplitude calculated is $5cm$ .
Hence, option (C) is the correct option.
Note
Simple harmonic motion is a type of periodic motion. In simple harmonic motion, the amplitude of a particle will also be its maximum displacement from the mean position of the particle. The particle will have maximum velocity when it is at the mean position and the particle will have maximum acceleration when it is at its extreme positions.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
