A moving block having mass $m$, collides with another stationary block having mass $4m$. The lighter block comes to rest after the collision. When the initial velocity of the lighter block is $v$, then the value of coefficient of restitution $(e)$ will be:
(A) $0.5$
(B) $0.25$
(C) $0.4$
(D) $0.8$
Answer
Verified
118.8k+ views
Hint Here we will use the conservation of linear momentum since the collision is non-sticky. The conservation of linear momentum will give the solution $m \times v = 4m \times u$. Using this equation, we will find the coefficient of restitution as $e = \dfrac{u}{v}$, substituting $v = 4u$ from the above equation.
Formula used:
Conservation of momentum and coefficient of restitution
$e = \dfrac{{relative\,velocity\,of\,separation}}{{relative\,velocity\,of\,approach}}$.
Complete Step by step answer
The coefficient of restitution is defined as the ratio of final velocity to the initial velocity between two objects after their collision. More precisely, it is the ratio of the relative velocity of the two bodies at their separation to their approach.
Using the conservation of linear momentum, we have
$m \times v + 4m \times 0 = m \times 0 + 4m \times u$,
where $u$ is the velocity of the heavier block after the collision.
We have used zero velocities for the initial velocity of the heavier block and the final velocity of the lighter block as given in the above problem.
Therefore, we have
$m \times v = 4m \times u$,
$ \Rightarrow u = \dfrac{v}{4}$.
Now from the definition of the coefficient of restitution, we have the coefficient of restitution $e = \dfrac{{relative\,velocity\,of\,separation}}{{relative\,velocity\,of\,approach}}$.
Substituting the value of the final velocity of the heavier block into the above equation of coefficient of restitution, we get,
$e = \dfrac{u}{v} = \dfrac{{v/4}}{v} = \dfrac{1}{4}$.
Therefore, the correct answer is option (B).
Note The coefficient of restitution is defined for the collision of two bodies only. The coefficient of restitution is unity for perfectly elastic collisions and lies between $0$ and $1$ for inelastic collisions. In the case of collisions involving the sticky mass concept, where some mass moving with an initial velocity sticks to another mass, we cannot conserve energy, since some energy is within the amalgamation of the bodies.
Formula used:
Conservation of momentum and coefficient of restitution
$e = \dfrac{{relative\,velocity\,of\,separation}}{{relative\,velocity\,of\,approach}}$.
Complete Step by step answer
The coefficient of restitution is defined as the ratio of final velocity to the initial velocity between two objects after their collision. More precisely, it is the ratio of the relative velocity of the two bodies at their separation to their approach.
Using the conservation of linear momentum, we have
$m \times v + 4m \times 0 = m \times 0 + 4m \times u$,
where $u$ is the velocity of the heavier block after the collision.
We have used zero velocities for the initial velocity of the heavier block and the final velocity of the lighter block as given in the above problem.
Therefore, we have
$m \times v = 4m \times u$,
$ \Rightarrow u = \dfrac{v}{4}$.
Now from the definition of the coefficient of restitution, we have the coefficient of restitution $e = \dfrac{{relative\,velocity\,of\,separation}}{{relative\,velocity\,of\,approach}}$.
Substituting the value of the final velocity of the heavier block into the above equation of coefficient of restitution, we get,
$e = \dfrac{u}{v} = \dfrac{{v/4}}{v} = \dfrac{1}{4}$.
Therefore, the correct answer is option (B).
Note The coefficient of restitution is defined for the collision of two bodies only. The coefficient of restitution is unity for perfectly elastic collisions and lies between $0$ and $1$ for inelastic collisions. In the case of collisions involving the sticky mass concept, where some mass moving with an initial velocity sticks to another mass, we cannot conserve energy, since some energy is within the amalgamation of the bodies.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs