
A monkey is at rest on a weightless rope which goes over a pulley and is tied to a bunch of bananas at the other end. The weight of the bunch of bananas is exactly the same as that of the monkey. The pulley is frictionless and weightless. The monkey starts to climb up the rope to reach the bananas. As he climbs, the distance between him and the bananas will:

$\left( {{A}} \right)$ Decrease
$\left( {{B}} \right)$ Increase
$\left( {{C}} \right)$ First decrease and then increase
$\left( {{D}} \right)$ Remain unchanged
Answer
154.2k+ views
Hint: Here, the monkey accelerates upwards, thus the bunch of bananas also accelerates with the same magnitude which is downwards. The mass of the monkey and bananas are the same. The separation between monkey and bananas remains constant. In case the monkey moves upward then \[{{T > MG}}\].
Complete step by step answer:

Let us assume that the monkey is moving upward with direction a. The forces acting on the monkey is \[{{{M}}_{{m}}}{{G}}\] and tension \[{{{T}}_{{m}}}\] because of the rope.
Similarly, the forces acting on the bananas are \[{{{M}}_{{b}}}{{G}}\] and tension \[{{{T}}_{{b}}}\] because of the rope.
So, from the above data the net force in the direction of acceleration a (for monkey) is:
\[\Rightarrow {{T = }}{{{M}}_{{m}}}{{(G + a)}}\]
The net force for bananas is
\[\Rightarrow {{T = M_b G}}\]
Equating both the equations,
\[\Rightarrow {{M_b G = }}{{{M}}_{{m}}}{{(G + a)}}\]
On multiplying the term we get
\[\Rightarrow {{M_b G = }}{{{M}}_{{m}}}{{G + }}{{{M}}_{{m}}}{{a}}\]
According to the question, the mass of the monkey and bananas are the same.
So, \[{{{M}}_{{m}}}{{ = }}{{{M}}_{{b}}}\]
\[\Rightarrow {{M_m a = 0}}\]
\[\Rightarrow {{a = 0}}\].
Therefore, the acceleration \[a\]is zero and the distance between monkey and the banana will remain unchanged.
Hence the correct option is \[D\].
Note: In the above question, bananas are not accelerating in any direction and only the monkey is moving with an acceleration a.
Wrong thinking:
The monkey is moving up by pulling the rope downwards, then the distance between the monkey and bananas will be decreased.
The above one is wrong because the masses of the monkey and bananas are the same as per question.
Complete step by step answer:

Let us assume that the monkey is moving upward with direction a. The forces acting on the monkey is \[{{{M}}_{{m}}}{{G}}\] and tension \[{{{T}}_{{m}}}\] because of the rope.
Similarly, the forces acting on the bananas are \[{{{M}}_{{b}}}{{G}}\] and tension \[{{{T}}_{{b}}}\] because of the rope.
So, from the above data the net force in the direction of acceleration a (for monkey) is:
\[\Rightarrow {{T = }}{{{M}}_{{m}}}{{(G + a)}}\]
The net force for bananas is
\[\Rightarrow {{T = M_b G}}\]
Equating both the equations,
\[\Rightarrow {{M_b G = }}{{{M}}_{{m}}}{{(G + a)}}\]
On multiplying the term we get
\[\Rightarrow {{M_b G = }}{{{M}}_{{m}}}{{G + }}{{{M}}_{{m}}}{{a}}\]
According to the question, the mass of the monkey and bananas are the same.
So, \[{{{M}}_{{m}}}{{ = }}{{{M}}_{{b}}}\]
\[\Rightarrow {{M_m a = 0}}\]
\[\Rightarrow {{a = 0}}\].
Therefore, the acceleration \[a\]is zero and the distance between monkey and the banana will remain unchanged.
Hence the correct option is \[D\].
Note: In the above question, bananas are not accelerating in any direction and only the monkey is moving with an acceleration a.
Wrong thinking:
The monkey is moving up by pulling the rope downwards, then the distance between the monkey and bananas will be decreased.
The above one is wrong because the masses of the monkey and bananas are the same as per question.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Charging and Discharging of Capacitor

If the unit of power is 1Kilo Watt the length is 100m class 11 physics JEE_Main

Other Pages
Which of the following statements is correct if the class 11 physics JEE_Main

JEE Advanced 2025 Revision Notes for Mechanics

JEE Advanced 2025 Surface Chemistry Revision Notes

The quantity of heat required to heat one mole of a class 11 physics JEE_Main

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE
