
A hairpin-like shape as shown in the figure is made by bending a long current-carrying wire. What is the magnitude of a magnetic field at point P which lies on the centre of the semicircle?

a) \[\dfrac{{{\mu _o}I}}{{4\pi R}}\left( {2 - \pi } \right)\]
b) \[\dfrac{{{\mu _o}I}}{{4\pi R}}\left( {2 + \pi } \right)\]
c) \[\dfrac{{{\mu _o}I}}{{2\pi R}}\left( {2 + \pi } \right)\]
d) \[\dfrac{{{\mu _o}I}}{{2\pi R}}\left( {2 - \pi } \right)\]
Answer
224.7k+ views
Hint: Here, we will need to consider three cases to find total magnetic induction at point P which is at distance r from the line and semicircle.
Complete answer:
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the magnetic field and its own velocity acts on a moving charge in a magnetic field.
A second application of the right-hand rule can be used to determine the magnetic field's direction. Your fingers will wrap around the wire in the same way that B does if you hold the wire in your right hand with your thumb pointing along the current.
If you do not recollect the formula, you can derive it using Biot Savarts law, which states that:-
\[dB = \dfrac{{{\mu _O}I\int {\sin \theta dl} }}{{4\pi {r^2}}}\]
By substituting appropriate terms with \[\sin \theta \], and then integrating w.r.t r, one can easily find Magnetic Induction at a point for any mathematically integrable object.
Now,
Magnetic field due to straight wire is, \[\dfrac{{{\mu _o}I}}{{4\pi R}}\]
Magnetic field at centre of semicircle is, \[\dfrac{{{\mu _o}I}}{{4R}}\]
Total Magnetic field at point P(B) = \[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I}}{{4R}}\]
B=\[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I\pi }}{{4\pi R}}\]
B = \[\dfrac{{{\mu _o}I}}{{4\pi R}}(2 + \pi )\]
Hence, The answer is b) \[\dfrac{{{\mu _o}I}}{{4\pi R}}\left( {2 + \pi } \right)\]
Note: To be able to solve this type of sum easily, one should be thorough with all the formulas related to Magnetic field. Some of the important ones are Magnetic field due to infinite wire, Magnetic field due to finite wire, Magnetic field at the centre of circle.
Complete answer:
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the magnetic field and its own velocity acts on a moving charge in a magnetic field.
A second application of the right-hand rule can be used to determine the magnetic field's direction. Your fingers will wrap around the wire in the same way that B does if you hold the wire in your right hand with your thumb pointing along the current.
If you do not recollect the formula, you can derive it using Biot Savarts law, which states that:-
\[dB = \dfrac{{{\mu _O}I\int {\sin \theta dl} }}{{4\pi {r^2}}}\]
By substituting appropriate terms with \[\sin \theta \], and then integrating w.r.t r, one can easily find Magnetic Induction at a point for any mathematically integrable object.
Now,
Magnetic field due to straight wire is, \[\dfrac{{{\mu _o}I}}{{4\pi R}}\]
Magnetic field at centre of semicircle is, \[\dfrac{{{\mu _o}I}}{{4R}}\]
Total Magnetic field at point P(B) = \[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I}}{{4R}}\]
B=\[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I}}{{4\pi R}}\]+\[\dfrac{{{\mu _o}I\pi }}{{4\pi R}}\]
B = \[\dfrac{{{\mu _o}I}}{{4\pi R}}(2 + \pi )\]
Hence, The answer is b) \[\dfrac{{{\mu _o}I}}{{4\pi R}}\left( {2 + \pi } \right)\]
Note: To be able to solve this type of sum easily, one should be thorough with all the formulas related to Magnetic field. Some of the important ones are Magnetic field due to infinite wire, Magnetic field due to finite wire, Magnetic field at the centre of circle.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

