
A bar magnet having centre O has a length of $4cm$. Point ${P_1}$ is in the broad side-on and ${P_2}$ is in the end side-on position with \[O{P_1} = OP{2_2} = 10\;m\]. The ratio of magnetic intensities H at ${P_1}$ and ${P_2}$ is
(A) ${H_1}:{H_2} = 16:100$
(B) ${H_1}:{H_2} = 1:2$
(C) ${H_1}:{H_2} = 2:1$
(D) ${H_1}:{H_2} = 100:16$
Answer
163.2k+ views
Hint:
Hint: In order to solve this question, we will first find the magnetic field on the axis of the bar magnet at the given point which is its end side position and then we will find the magnetic field on the equator which is its broadside and then we will find the ratio of both magnetic intensities.
Formula used:
Magnetic field due to a small bar magnet on its axis is given by ${B_{axis}} = \dfrac{{{\mu _o}2M}}{{4\pi {r^3}}}$ where M is magnetic strength of bar magnet, r is the distance at which magnetic field is to find out and ${\mu _o}$ is called relative permeability of free space.
Magnetic field on the equator point due to small bar magnet is given by ${B_{equator}} = \dfrac{{{\mu _o}M}}{{4\pi {r^3}}}$
Complete step by step solution:
According to the question, we have given that magnetic field on the axis of bar magnet at a distance of $O{P_2} = 10m$ is ${H_2}$ then, using${B_{axis}} = \dfrac{{{\mu _o}2M}}{{4\pi {r^3}}}$ we get,
${H_2} = \dfrac{{{\mu _o}2M}}{{4\pi {{(10)}^3}}} \to (i)$
and for on Broad point which means equator, we have ${B_{equator}} = \dfrac{{{\mu _o}M}}{{4\pi {r^3}}}$ denoted by ${H_1}$ at a distance of $O{P_1} = 10m$ we get,
${H_1} = \dfrac{{{\mu _o}M}}{{4\pi {{(10)}^3}}} \to (ii)$
On dividing equation (ii) by (i) we get,
${H_1}:{H_2} = 1:2$
Hence, the correct answer is option (B) ${H_1}:{H_2} = 1:2$
Therefore, the correct option is B.
Note:
It should be noted that the magnetic field due to the small bar magnet on its axis point which is the endpoint is always twice the value of the magnetic field due to the same bar magnet at its equator which means at a broad point keeping the distances same on its axis and on the equator as well.
Hint: In order to solve this question, we will first find the magnetic field on the axis of the bar magnet at the given point which is its end side position and then we will find the magnetic field on the equator which is its broadside and then we will find the ratio of both magnetic intensities.
Formula used:
Magnetic field due to a small bar magnet on its axis is given by ${B_{axis}} = \dfrac{{{\mu _o}2M}}{{4\pi {r^3}}}$ where M is magnetic strength of bar magnet, r is the distance at which magnetic field is to find out and ${\mu _o}$ is called relative permeability of free space.
Magnetic field on the equator point due to small bar magnet is given by ${B_{equator}} = \dfrac{{{\mu _o}M}}{{4\pi {r^3}}}$
Complete step by step solution:
According to the question, we have given that magnetic field on the axis of bar magnet at a distance of $O{P_2} = 10m$ is ${H_2}$ then, using${B_{axis}} = \dfrac{{{\mu _o}2M}}{{4\pi {r^3}}}$ we get,
${H_2} = \dfrac{{{\mu _o}2M}}{{4\pi {{(10)}^3}}} \to (i)$
and for on Broad point which means equator, we have ${B_{equator}} = \dfrac{{{\mu _o}M}}{{4\pi {r^3}}}$ denoted by ${H_1}$ at a distance of $O{P_1} = 10m$ we get,
${H_1} = \dfrac{{{\mu _o}M}}{{4\pi {{(10)}^3}}} \to (ii)$
On dividing equation (ii) by (i) we get,
${H_1}:{H_2} = 1:2$
Hence, the correct answer is option (B) ${H_1}:{H_2} = 1:2$
Therefore, the correct option is B.
Note:
It should be noted that the magnetic field due to the small bar magnet on its axis point which is the endpoint is always twice the value of the magnetic field due to the same bar magnet at its equator which means at a broad point keeping the distances same on its axis and on the equator as well.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE
