
xy plane divides the line joining the points \[\left( {2,4,5} \right)\] and $\left( { - 4,3, - 2} \right)$ in the ratio
A. $3:5$
B. $5:2$
C. $1:3$
D. $3:4$
Answer
232.8k+ views
Hint: In order to solve this type of question, first assume the ratio as k:1. Then, using the section formula i.e., $\left( {x,y,z} \right) = \left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{z_2} + {m_2}{z_1}}}{{{m_1} + {m_2}}}} \right)$ we will find the required ratio. Here, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,4,5} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 4,3, - 2} \right)$. Also, ${m_1} = k$ and ${m_2} = 1.$
Formula used:
$\left( {x,y,z} \right) = \left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{z_2} + {m_2}{z_1}}}{{{m_1} + {m_2}}}} \right)$
Complete step by step solution:
We are given that,
$A\left( {2,4,5} \right)$ and $B\left( { - 4,3, - 2} \right)$
Let xy plane divide the line joining the points in the ratio of $k:1.$
In the xy plane, z-coordinate must be $0.$
Solving for z-coordinate,
Using section formula, compare the z-coordinate to get the required ratio,
$ \Rightarrow \dfrac{{k\left( { - 2} \right) + 1\left( 5 \right)}}{{k + 1}} = 0$
$ - 2k + 5 = 0$
On solving,
$k = \dfrac{5}{2}$
$\therefore $The correct option is B.
Note: The line segment divides the xy plane, this means that the line joining the given points is parallel to z-axis. So, the z-coordinate is 0. Also, make sure that the coordinates of the point that divides the plane is $\left( {x,y,0} \right)$ and not $\left( {0,0,z} \right)$, otherwise it may lead to incorrect answer.
Formula used:
$\left( {x,y,z} \right) = \left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{z_2} + {m_2}{z_1}}}{{{m_1} + {m_2}}}} \right)$
Complete step by step solution:
We are given that,
$A\left( {2,4,5} \right)$ and $B\left( { - 4,3, - 2} \right)$
Let xy plane divide the line joining the points in the ratio of $k:1.$
In the xy plane, z-coordinate must be $0.$
Solving for z-coordinate,
Using section formula, compare the z-coordinate to get the required ratio,
$ \Rightarrow \dfrac{{k\left( { - 2} \right) + 1\left( 5 \right)}}{{k + 1}} = 0$
$ - 2k + 5 = 0$
On solving,
$k = \dfrac{5}{2}$
$\therefore $The correct option is B.
Note: The line segment divides the xy plane, this means that the line joining the given points is parallel to z-axis. So, the z-coordinate is 0. Also, make sure that the coordinates of the point that divides the plane is $\left( {x,y,0} \right)$ and not $\left( {0,0,z} \right)$, otherwise it may lead to incorrect answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

