
Which one of the two is greater? \[{{\log }_{2}}3\]or \[{{\log }_{\dfrac{1}{2}}}5\]
(a) \[{{\log }_{2}}3\]
(b) \[{{\log }_{\dfrac{1}{2}}}5\]
(c) Both are equal
(d) Can’t say
Answer
232.8k+ views
Hint: Convert \[{{\log }_{a}}x=y\]to \[x={{a}^{y}}\]and find the appropriate values of \[{{a}^{y}}\].
Here, we have to find that which is greater among \[{{\log }_{2}}3\]or \[{{\log }_{\dfrac{1}{2}}}5\].
Taking \[{{\log }_{2}}3=A\]
We know that, when \[{{\log }_{b}}a=n\]
Then, \[a={{b}^{n}}....\left( i \right)\]
Similarly, \[3={{2}^{A}}...\left( ii \right)\]
Now, we know that \[{{\left( 2 \right)}^{1}}=2\]and \[{{\left( 2 \right)}^{2}}=4\].
Also, \[{{2}^{1}}<3<{{2}^{2}}\]
From equation \[\left( ii \right)\], \[{{2}^{1}}<{{2}^{A}}<{{2}^{2}}\]
Hence, \[1Therefore, we get the approximate value of \[A={{\log }_{2}}3\]between \[1\] and \[2\].
Taking \[{{\log }_{\dfrac{1}{2}}}5=B\]
From equation \[\left( i \right)\],
\[\Rightarrow 5={{\left( \dfrac{1}{2} \right)}^{B}}\]
We know that \[\dfrac{1}{a}={{a}^{-1}}\]
Hence, we get \[5={{2}^{-B}}....\left( iii \right)\]
Now, we know that
\[{{2}^{2}}=4\]
And \[{{2}^{3}}=8\]
Also, \[{{2}^{2}}<5<{{2}^{3}}\]
As, \[-\left( -a \right)=a\]
We can also write it as \[{{2}^{-\left( -2 \right)}}<5<{{2}^{-\left( -3 \right)}}\]
From equation \[\left( iii \right)\], \[{{2}^{-\left( -2 \right)}}<{{2}^{-B}}<{{2}^{-\left( -3 \right)}}\]
Hence, \[-2Therefore, we get the approximate value of \[B={{\log }_{\dfrac{1}{2}}}5\]between \[-2\]and \[-3\].
Clearly, as \[A\]is positive and \[B\]is negative.
\[A>B\]
Or, \[{{\log }_{2}}3>{{\log }_{\dfrac{1}{2}}}5\]
Therefore, option (a) is correct
Note: Here, some students may think that as \[\dfrac{1}{2}\]is smaller as compared to \[2\], so it will require greater power to become \[5\]as compared to power required by\[2\] to become \[3\]. But in this process, they miss the negative sign in the power that will also be required to convert \[\dfrac{1}{2}\]to \[5\]and get the wrong result.
Here, we have to find that which is greater among \[{{\log }_{2}}3\]or \[{{\log }_{\dfrac{1}{2}}}5\].
Taking \[{{\log }_{2}}3=A\]
We know that, when \[{{\log }_{b}}a=n\]
Then, \[a={{b}^{n}}....\left( i \right)\]
Similarly, \[3={{2}^{A}}...\left( ii \right)\]
Now, we know that \[{{\left( 2 \right)}^{1}}=2\]and \[{{\left( 2 \right)}^{2}}=4\].
Also, \[{{2}^{1}}<3<{{2}^{2}}\]
From equation \[\left( ii \right)\], \[{{2}^{1}}<{{2}^{A}}<{{2}^{2}}\]
Hence, \[1Therefore, we get the approximate value of \[A={{\log }_{2}}3\]between \[1\] and \[2\].
Taking \[{{\log }_{\dfrac{1}{2}}}5=B\]
From equation \[\left( i \right)\],
\[\Rightarrow 5={{\left( \dfrac{1}{2} \right)}^{B}}\]
We know that \[\dfrac{1}{a}={{a}^{-1}}\]
Hence, we get \[5={{2}^{-B}}....\left( iii \right)\]
Now, we know that
\[{{2}^{2}}=4\]
And \[{{2}^{3}}=8\]
Also, \[{{2}^{2}}<5<{{2}^{3}}\]
As, \[-\left( -a \right)=a\]
We can also write it as \[{{2}^{-\left( -2 \right)}}<5<{{2}^{-\left( -3 \right)}}\]
From equation \[\left( iii \right)\], \[{{2}^{-\left( -2 \right)}}<{{2}^{-B}}<{{2}^{-\left( -3 \right)}}\]
Hence, \[-2Therefore, we get the approximate value of \[B={{\log }_{\dfrac{1}{2}}}5\]between \[-2\]and \[-3\].
Clearly, as \[A\]is positive and \[B\]is negative.
\[A>B\]
Or, \[{{\log }_{2}}3>{{\log }_{\dfrac{1}{2}}}5\]
Therefore, option (a) is correct
Note: Here, some students may think that as \[\dfrac{1}{2}\]is smaller as compared to \[2\], so it will require greater power to become \[5\]as compared to power required by\[2\] to become \[3\]. But in this process, they miss the negative sign in the power that will also be required to convert \[\dfrac{1}{2}\]to \[5\]and get the wrong result.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

