
Which one of the following Boolean expressions is a tautology?
$\begin{align}
& \text{A}\text{. }\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right) \\
& \text{B}\text{. }\left( p\wedge q \right)\vee \left( p\vee \sim q \right) \\
& \text{C}\text{. }\left( p\vee q \right)\wedge \left( p\vee \sim q \right) \\
& \text{D}\text{. }\left( p\vee q \right)\vee \left( p\vee \sim q \right) \\
\end{align}$
Answer
233.1k+ views
Hint: To solve this question we have to draw a truth table for all the expressions given in the options. The output values of all the possible combinations of the expression must be true for expression to be a tautology. So, the expression from the options gives the output values true is a tautology.
Complete step-by-step answer:
Before solving this question let us first understand the meaning of the symbols used in the question.
Here, symbol $\wedge $ represents the AND operator, symbol $\vee $ represents the OR operator and symbol $\sim $ represents the NOT operator.
Now, let us draw the truth table for the option A i.e. $\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$
Now, we will draw a truth table for option B, i.e. $\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$
Now, we will draw a truth table for option C, i.e. $\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$
Now, we will draw a truth table for option D, i.e. $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$
It is clear from the truth tables that only expression $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ gives all True values in output, so $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ is a tautology.
Hence, option D is the correct answer.
Note: Be careful while solving AND operator and OR operator because students get confused between the two symbols and make mistakes. It is necessary to check all options because sometimes a question has multiple correct options.
Complete step-by-step answer:
Before solving this question let us first understand the meaning of the symbols used in the question.
Here, symbol $\wedge $ represents the AND operator, symbol $\vee $ represents the OR operator and symbol $\sim $ represents the NOT operator.
Now, let us draw the truth table for the option A i.e. $\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$
| $p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\vee q \right)$ | $\left( \sim p\vee \sim q \right)$ | $\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$ |
| True | True | False | False | True | False | False |
| True | False | False | True | True | True | True |
| False | True | True | False | True | True | True |
| False | False | True | True | False | True | False |
Now, we will draw a truth table for option B, i.e. $\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$
| $p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\wedge q \right)$ | $\left( p\vee \sim q \right)$ | $\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$ |
| True | True | False | False | True | True | True |
| True | False | False | True | False | True | True |
| False | True | True | False | False | False | False |
| False | False | True | True | False | True | True |
Now, we will draw a truth table for option C, i.e. $\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$
| $p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\vee q \right)$ | $\left( p\vee \sim q \right)$ | $\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$ |
| True | True | False | False | True | True | True |
| True | False | False | True | True | True | True |
| False | True | True | False | True | False | False |
| False | False | True | True | False | True | False |
Now, we will draw a truth table for option D, i.e. $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$
| $p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\vee q \right)$ | $\left( p\vee \sim q \right)$ | $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ |
| True | True | False | False | True | True | True |
| True | False | False | True | True | True | True |
| False | True | True | False | True | False | True |
| False | False | True | True | False | True | True |
It is clear from the truth tables that only expression $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ gives all True values in output, so $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ is a tautology.
Hence, option D is the correct answer.
Note: Be careful while solving AND operator and OR operator because students get confused between the two symbols and make mistakes. It is necessary to check all options because sometimes a question has multiple correct options.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

