
Which of the following is true in triangle ABC.
A. \[\left( {b + c} \right)\sin \dfrac{{B - C}}{2} = 2a\cos \dfrac{A}{2}\]
B. \[\left( {b + c} \right)\cos \dfrac{A}{2} = 2a\sin \dfrac{{B - C}}{2}\]
C. \[\left( {b - c} \right)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}\]
D. \[\left( {b - c} \right)\sin \dfrac{{B - C}}{2} = 2a\cos \dfrac{A}{2}\]
Answer
232.8k+ views
Hint: We will use sine law to find the value of \[\dfrac{{b - c}}{a}\]. Then we will apply the formula of the difference between two sin angles, the half angle formula of sine, and the sum of angles of a triangle to get the desired result.
Formula used:
Double angle formula
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Difference in sin angle
\[\sin C - \sin D = 2\cos \dfrac{{C - D}}{2}\sin \dfrac{{C + D}}{2}\]
Sine Law
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
We will find the value of \[\dfrac{{b - c}}{a}\].
We know sine law \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = \dfrac{1}{k}\]
\[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\]
Now substitute \[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\] in \[\dfrac{{b - c}}{a}\]
\[\dfrac{{k\sin B - k\sin C}}{{k\sin A}}\]
\[ = \dfrac{{\sin B - \sin C}}{{\sin A}}\]
Now applying the formula \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\] in the numerator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin A}}\]
Now applying double angle formula in denominator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
We know that the sum of all angles of a triangle is \[\pi \]. Thus \[A + B + C = \pi \]. This implies \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\].
Putting \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\] in the above expression
\[ = \dfrac{{2\cos \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
\[ = \dfrac{{2\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Cancel out \[2\sin \dfrac{A}{2}\] from the denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
Therefore, \[\dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
\[ \Rightarrow \left( {b - c} \right)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}\]
Hence option C is the correct option.
Note: Some students often make mistakes in the formula of difference of two sin angles. They used \[\sin C - \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}\] which is incorrect. The correct formula is \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\].
Formula used:
Double angle formula
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Difference in sin angle
\[\sin C - \sin D = 2\cos \dfrac{{C - D}}{2}\sin \dfrac{{C + D}}{2}\]
Sine Law
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
We will find the value of \[\dfrac{{b - c}}{a}\].
We know sine law \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = \dfrac{1}{k}\]
\[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\]
Now substitute \[a = k\sin A\], \[b = k\sin B\], and \[c = k\sin C\] in \[\dfrac{{b - c}}{a}\]
\[\dfrac{{k\sin B - k\sin C}}{{k\sin A}}\]
\[ = \dfrac{{\sin B - \sin C}}{{\sin A}}\]
Now applying the formula \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\] in the numerator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{\sin A}}\]
Now applying double angle formula in denominator
\[ = \dfrac{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
We know that the sum of all angles of a triangle is \[\pi \]. Thus \[A + B + C = \pi \]. This implies \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\].
Putting \[\dfrac{{B + C}}{2} = \dfrac{\pi }{2} - \dfrac{A}{2}\] in the above expression
\[ = \dfrac{{2\cos \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
\[ = \dfrac{{2\sin \dfrac{A}{2}\sin \dfrac{{B - C}}{2}}}{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Cancel out \[2\sin \dfrac{A}{2}\] from the denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
Therefore, \[\dfrac{{b - c}}{a} = \dfrac{{\sin \dfrac{{B - C}}{2}}}{{\cos \dfrac{A}{2}}}\]
\[ \Rightarrow \left( {b - c} \right)\cos \dfrac{A}{2} = a\sin \dfrac{{B - C}}{2}\]
Hence option C is the correct option.
Note: Some students often make mistakes in the formula of difference of two sin angles. They used \[\sin C - \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}\] which is incorrect. The correct formula is \[\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

