
Which of the following is equal to the expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
A \[{}^{n + 4}{C_r}\]
B \[2 \cdot {}^{n + 4}{C_{r - 1}}\]
C \[4 \cdot {}^n{C_r}\]
D \[11 \cdot {}^n{C_r}\]
Answer
233.1k+ views
Hint: Selection of items from a given collection irrespective of order of section is called combination.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Formula Used: \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
Here, n be the total items and r be the selected items.
Complete step by step solution: The given expression is \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\].
First arrange the terms and simplify the expression.
\[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}} = \left( {{}^n{C_r} + {}^n{C_{r - 1}}} \right) + 3 \cdot \left( {{}^n{C_{r - 1}} + {}^n{C_{r - 2}}} \right) + 3 \cdot \left( {{}^n{C_{r - 2}} + {}^n{C_{r - 3}}} \right) + \left( {{}^n{C_{r - 3}} + {}^n{C_{r - 4}}} \right)\]
Now use the concept of \[{}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\] and simplify the expression.
\[ \Rightarrow {}^{n + 1}{C_r} + 3 \cdot {}^{n + 1}{C_{r - 1}} + 3 \cdot {}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}\]
Rearrange the terms and write the expression
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Simplify the terms as follows.
\[ \Rightarrow \left( {{}^{n + 1}{C_r} + {}^{n + 1}{C_{r - 1}}} \right) + 2\left( {{}^{n + 1}{C_{r - 1}} + {}^{n + 1}{C_{r - 2}}} \right) + \left( {{}^{n + 1}{C_{r - 2}} + {}^{n + 1}{C_{r - 3}}} \right)\]
Now, simplify the expression as follows.
\[ \Rightarrow {}^{n + 2}{C_r} + 2 \cdot {}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}\]
Hence, the expression becomes.
\[ \Rightarrow \left( {{}^{n + 2}{C_r} + {}^{n + 2}{C_{r - 1}}} \right) + \left( {{}^{n + 2}{C_{r - 1}} + {}^{n + 2}{C_{r - 2}}} \right)\]
Again, simplify the expression
\[ \Rightarrow {}^{n + 3}{C_r} + {}^{n + 3}{C_{r - 1}}\]
So, the expression is reduced as follows.
\[ \Rightarrow {}^{n + 4}{C_r}\]
The expression \[{}^n{C_r} + 4 \cdot {}^n{C_{r - 1}} + 6 \cdot {}^n{C_{r - 2}} + 4 \cdot {}^n{C_{r - 3}} + {}^n{C_{r - 4}}\] is equal to \[{}^{n + 4}{C_r}\].
Option ‘A’ is correct
Note: The common mistake students make is that any term is missed that gives the wrong answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

