
What is the value of the integral \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\]?
A. 1
B. 0
C. \[ - 1\]
D. \[\dfrac{1}{2}\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the integral by using the integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]. Then, add this integral with the given integral and simplify it. After that, solve the integral using the integration formulas. In the end, apply the upper and lower limits to get the value of the given integral.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_2^3 {\dfrac{{\sqrt {2 + 3 - x} }}{{\sqrt {5 - \left( {2 + 3 - x} \right)} + \sqrt {2 + 3 - x} }}} dx\]
\[ \Rightarrow I = \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx + \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }} + \dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x + \sqrt {5 - x} }}{{\sqrt {5 - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 1 dx\]
Apply the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[2I = \left[ x \right]_2^3\]
\[ \Rightarrow 2I = \left[ {3 - 2} \right]\]
\[ \Rightarrow 2I = 1\]
\[ \Rightarrow I = \dfrac{1}{2}\]
Therefore, \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx = \dfrac{1}{2}\].
Option ‘D’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_2^3 {\dfrac{{\sqrt {2 + 3 - x} }}{{\sqrt {5 - \left( {2 + 3 - x} \right)} + \sqrt {2 + 3 - x} }}} dx\]
\[ \Rightarrow I = \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx + \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }} + \dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x + \sqrt {5 - x} }}{{\sqrt {5 - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 1 dx\]
Apply the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[2I = \left[ x \right]_2^3\]
\[ \Rightarrow 2I = \left[ {3 - 2} \right]\]
\[ \Rightarrow 2I = 1\]
\[ \Rightarrow I = \dfrac{1}{2}\]
Therefore, \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx = \dfrac{1}{2}\].
Option ‘D’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

