
What is the value of the integral \[\int\limits_0^\pi {x\sin xdx} \]?
A. \[\pi \]
B. 0
C. 1
D. \[{\pi ^2}\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, apply the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] and simplify the integral. After that, add this integral with the original integral and solve the integral. In the end, apply the upper and lower limits to get the required answer.
Formula Used: Definite integral rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int {\sin xdx = - \cos x} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {x\sin xdx} \].
Let consider,
\[I = \int\limits_0^\pi {x\sin xdx} \] \[.....\left( 1 \right)\]
Now apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the above integral.
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin \left( {\pi - x} \right)dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_0^\pi {x\sin xdx} + \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi \sin xdx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\sin xdx} \]
Solve the integral.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limit.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos \pi + \cos 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \left( { - 1} \right) + 1} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ 2 \right]\]
\[ \Rightarrow I = \pi \]
Therefore, \[\int\limits_0^\pi {x\sin xdx} = \pi \]
Option ‘A’ is correct
Note: students often get confused and solve the integral \[\int {\sin xdx = \cos x} \]. This formula is incorrect. Sometimes they forget to add the negative sign. The correct formula is \[\int {\sin xdx = - \cos x} \].
Formula Used: Definite integral rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int {\sin xdx = - \cos x} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {x\sin xdx} \].
Let consider,
\[I = \int\limits_0^\pi {x\sin xdx} \] \[.....\left( 1 \right)\]
Now apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the above integral.
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin \left( {\pi - x} \right)dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_0^\pi {x\sin xdx} + \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi \sin xdx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\sin xdx} \]
Solve the integral.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limit.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos \pi + \cos 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \left( { - 1} \right) + 1} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ 2 \right]\]
\[ \Rightarrow I = \pi \]
Therefore, \[\int\limits_0^\pi {x\sin xdx} = \pi \]
Option ‘A’ is correct
Note: students often get confused and solve the integral \[\int {\sin xdx = \cos x} \]. This formula is incorrect. Sometimes they forget to add the negative sign. The correct formula is \[\int {\sin xdx = - \cos x} \].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

