
What is the value of the definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]?
A. 0
B. \[\dfrac{4}{{3\sqrt 3 }}\]
C. \[\dfrac{3}{7}\]
D. \[\dfrac{5}{6}\]
Answer
217.8k+ views
Hint: Here, a definite integral is given. The function present in the integral is an absolute value function. First, apply the absolute function formula that is \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]. Then, break the interval for the greatest integer function. After that, solve the integrals. In the end, apply the limits and solve it to get the required answer.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Formula Used:Absolute value function: \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\].
Let consider,
\[I = \int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx\]
Substitute \[x = 3{x^2} - 1\] in the absolute value function \[\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{ - x,}&{if x < 0}\\{x,}&{if x \ge 0}\end{array}} \right.\].
We get,
\[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 3{x^2} - 1 < 0}\\{3{x^2} - 1,}&{if 3{x^2} - 1 \ge 0}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if {x^2} < \dfrac{1}{3}}\\{3{x^2} - 1,}&{if {x^2} \ge \dfrac{1}{3}}\end{array}} \right.\]
\[ \Rightarrow \left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if x \ge \dfrac{1}{{\sqrt 3 }}}\end{array}} \right.\]
The interval of the integration is 0 to 1.
This implies that \[\left| {3{x^2} - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{ - \left( {3{x^2} - 1} \right),}&{if 0 < x < \dfrac{1}{{\sqrt 3 }}}\\{3{x^2} - 1,}&{if \dfrac{1}{{\sqrt 3 }} < x \le 1}\end{array}} \right.\].
Break the integration by using the above absolute value function.
\[I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} { - \left( {3{x^2} - 1} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( {1 - 3{x^2}} \right)} dx + \int\limits_{\dfrac{1}{{\sqrt 3 }}}^1 {\left( {3{x^2} - 1} \right)} dx\]
Now solve the integrals by using the formulas \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\] and \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow I = \left[ {x - \dfrac{{3{x^3}}}{3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {\dfrac{{3{x^3}}}{3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
\[ \Rightarrow I = \left[ {x - {x^3}} \right]_0^{\dfrac{1}{{\sqrt 3 }}} + \left[ {{x^3} - x} \right]_{\dfrac{1}{{\sqrt 3 }}}^1\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\left( {\dfrac{1}{{\sqrt 3 }} - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3}} \right) - \left( {0 - {0^3}} \right)} \right] + \left[ {\left( {{1^3} - 1} \right) - \left( {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^3} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \left[ {\left( {1 - 1} \right) - \left( {\dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} - \dfrac{1}{{3\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{3\sqrt 3 }}\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {1 - \dfrac{1}{3}} \right)\]
\[ \Rightarrow I = \dfrac{2}{{\sqrt 3 }}\left( {\dfrac{2}{3}} \right)\]
\[ \Rightarrow I = \dfrac{4}{{3\sqrt 3 }}\]
Thus, \[\int\limits_0^1 {\left| {3{x^2} - 1} \right|} dx = \dfrac{4}{{3\sqrt 3 }}\].
Option ‘B’ is correct
Note: Students often make mistakes while calculating the intervals of the absolute value function. So, to calculate the interval substitute the given function in the absolute value function formula and simplify the inequality equations.
Recently Updated Pages
Combination of Capacitors: Series and Parallel Explained

Compressibility Factor Explained: Definition, Formula & Uses

Compressibility Factor Z: Definition, Formula & Uses

Conservation of Momentum Explained: Formula, Examples & Laws

Conservation of Momentum: Jumping, Firing & Explosions Explained

Elastic Collision in Two Dimensions Explained Simply

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

