
What is the value of the definite integral \[\int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\]?
A. \[ - \dfrac{\pi }{2}\log 2\]
B. \[\dfrac{\pi }{2}\log 2\]
C. \[\pi \log 2\]
D. \[ - \pi \log 2\]
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, solve the integral by applying the integration by parts method. Then, solve the first term by applying the limits. After that, solve the simplify the integral by applying the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]. and solve them using the u-substitution method, trigonometric and logarithmic properties. In the end, apply the limits and get the required answer.
Formula Used:Integration by parts formula: \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\sin 2x = 2\sin x\cos x\]
\[\int {\cot xdx = \log \sin x} \]
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\]
Now solve the integral by the integration by parts formula \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[I = \left[ {x\int {\cot xdx} } \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{d}{{dx}}x\int {\cot xdx} } \right]} dx\]
\[ \Rightarrow I = \left[ {x\log \sin x} \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {1 \times \log \sin x} \right]} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log \sin \dfrac{\pi }{2} - 0\log \sin 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log 1 - 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left( 0 \right) - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = - \left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \right]\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \]
\[ \Rightarrow 2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \]
From equation \[\left( 1 \right)\], we get \[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} + I\]
\[ \Rightarrow I = \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^{\dfrac{\pi }{2}} {x\cos xdx} = \dfrac{\pi }{2}\log 2\]
Option ‘B’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Formula Used:Integration by parts formula: \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\]
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
\[\sin 2x = 2\sin x\cos x\]
\[\int {\cot xdx = \log \sin x} \]
Complete step by step solution:The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\].
Let consider,
\[I = \int\limits_0^{\dfrac{\pi }{2}} {x\cot x} dx\]
Now solve the integral by the integration by parts formula \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)} dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]} dx\]
\[I = \left[ {x\int {\cot xdx} } \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\dfrac{d}{{dx}}x\int {\cot xdx} } \right]} dx\]
\[ \Rightarrow I = \left[ {x\log \sin x} \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {1 \times \log \sin x} \right]} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log \sin \dfrac{\pi }{2} - 0\log \sin 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \left[ {\dfrac{\pi }{2}\log 1 - 0} \right] - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left( 0 \right) - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin x} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} \]
\[ \Rightarrow I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[ \Rightarrow I + I = - \left[ {\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} } \right]\]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \].
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x + \log \cos x} \right]dx} \]
Apply the sum property of the logarithm \[\log \left( a \right) + \log \left( b \right) = \log \left( {ab} \right)\] .
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin x\cos x} \right]dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
Apply the quotient property of logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)dx} \]
\[ \Rightarrow 2I = - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log \sin 2x - \log 2} \right]dx} \]
\[ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \]
\[ \Rightarrow 2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin 2xdx} \] \[.....\left( 3 \right)\]
Now substitute \[2x = u\] in the first integral.
Then, \[dx = \dfrac{{du}}{2}\]
The limits changed as follows:
As \[x \to 0\], then \[u \to 0\]
As \[x \to \dfrac{\pi }{2}\], then \[u \to \pi \]
Substitute the values in the equation \[\left( 3 \right)\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \dfrac{1}{2}\int\limits_0^\pi {\log \sin udu} \]
Apply the integration rule \[\int\limits_0^{na} {f\left( x \right)} dx = n\int\limits_0^a {f\left( x \right)} dx\].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \]
From equation \[\left( 1 \right)\], we get \[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \sin udu} \].
\[2I = \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx} + I\]
\[ \Rightarrow I = \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\log 2\]
Thus, \[\int\limits_0^{\dfrac{\pi }{2}} {x\cos xdx} = \dfrac{\pi }{2}\log 2\]
Option ‘B’ is correct
Note: Students get confused and try to solve the integral \[\int {\log \sin xdx} \] by using the formula \[\int {\log x = x\left( {\log x - 1} \right)} \] . Because of that, they get the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

