
What is the value of the definite integral \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]?
A. 0
B. 1
C. 2
D. 4
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]. Then, check the values of the given absolute function in that interval. After that, apply the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]and solve it. In the end, apply the upper and lower limits to get the required answer.
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^\pi {\left| {\sin x} \right|} dx + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the absolute function.
We know that, values of \[\sin x\] are positive in the interval \[\left[ {0,\pi } \right]\] and negative in the interval \[\left[ {\pi ,2\pi } \right]\].
So, we get
\[I = \int\limits_0^\pi {\sin x} dx + \int\limits_\pi ^{2\pi } { - \sin x} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\sin x} dx - \int\limits_\pi ^{2\pi } {\sin x} dx\]
Solve the integrals by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
\[ \Rightarrow I = \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 + 1 + 1 + 1\]
\[ \Rightarrow I = 4\]
Therefore, \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx = 4\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^\pi {\left| {\sin x} \right|} dx + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the absolute function.
We know that, values of \[\sin x\] are positive in the interval \[\left[ {0,\pi } \right]\] and negative in the interval \[\left[ {\pi ,2\pi } \right]\].
So, we get
\[I = \int\limits_0^\pi {\sin x} dx + \int\limits_\pi ^{2\pi } { - \sin x} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\sin x} dx - \int\limits_\pi ^{2\pi } {\sin x} dx\]
Solve the integrals by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
\[ \Rightarrow I = \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 + 1 + 1 + 1\]
\[ \Rightarrow I = 4\]
Therefore, \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx = 4\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

