
What is the value of the definite integral \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]?
A. 0
B. 1
C. 2
D. 4
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]. Then, check the values of the given absolute function in that interval. After that, apply the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]and solve it. In the end, apply the upper and lower limits to get the required answer.
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^\pi {\left| {\sin x} \right|} dx + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the absolute function.
We know that, values of \[\sin x\] are positive in the interval \[\left[ {0,\pi } \right]\] and negative in the interval \[\left[ {\pi ,2\pi } \right]\].
So, we get
\[I = \int\limits_0^\pi {\sin x} dx + \int\limits_\pi ^{2\pi } { - \sin x} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\sin x} dx - \int\limits_\pi ^{2\pi } {\sin x} dx\]
Solve the integrals by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
\[ \Rightarrow I = \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 + 1 + 1 + 1\]
\[ \Rightarrow I = 4\]
Therefore, \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx = 4\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^\pi {\left| {\sin x} \right|} dx + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|} dx\]
Simplify the absolute function.
We know that, values of \[\sin x\] are positive in the interval \[\left[ {0,\pi } \right]\] and negative in the interval \[\left[ {\pi ,2\pi } \right]\].
So, we get
\[I = \int\limits_0^\pi {\sin x} dx + \int\limits_\pi ^{2\pi } { - \sin x} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\sin x} dx - \int\limits_\pi ^{2\pi } {\sin x} dx\]
Solve the integrals by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[ \Rightarrow I = \left[ { - \cos x} \right]_0^\pi - \left[ { - \cos x} \right]_\pi ^{2\pi }\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ { - \cos \pi - \left( { - \cos 0} \right)} \right] - \left[ { - \cos 2\pi - \left( { - \cos \pi } \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos \pi + \cos 0} \right] - \left[ { - \cos 2\pi + \cos \pi } \right]\]
\[ \Rightarrow I = \left[ { - \left( { - 1} \right) + 1} \right] - \left[ { - 1 + \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 + 1 + 1 + 1\]
\[ \Rightarrow I = 4\]
Therefore, \[\int\limits_0^{2\pi } {\left| {\sin x} \right|} dx = 4\].
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

