
What is the value of the definite integral \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\]?
A. \[a\]
B. \[\dfrac{a}{2}\]
C. \[2a\]
D. 0
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the integral by using the integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \]. Then, add both integrals and simplify the equation. After that, solve the integrals using the integration formula. In the end, apply the upper and lower limits and solve the equation to get the required answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\].
Let consider,
\[I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \].
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( {2a - \left( {2a - x} \right)} \right)}}} dx\]
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\]
\[I + I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx + \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}} + \dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right) + f\left( {2a - x} \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_0^{2a}\]
Apply the limits.
\[ \Rightarrow 2I = 2a - 0\]
\[ \Rightarrow 2I = 2a\]
\[ \Rightarrow I = a\]
Thus, \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx = a\].
Option ‘A’ is correct
Note: The integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \] is obtained from another integration rule \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^b {f\left( {a + b - x} \right)dx} \]. So, we can also apply this rule to solve the given integral.
Formula Used:\[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\].
Let consider,
\[I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \].
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( {2a - \left( {2a - x} \right)} \right)}}} dx\]
\[I = \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\]
\[I + I = \int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx + \int\limits_0^{2a} {\dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}} + \dfrac{{f\left( {2a - x} \right)}}{{f\left( {2a - x} \right) + f\left( x \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} {\left[ {\dfrac{{f\left( x \right) + f\left( {2a - x} \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_0^{2a} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_0^{2a}\]
Apply the limits.
\[ \Rightarrow 2I = 2a - 0\]
\[ \Rightarrow 2I = 2a\]
\[ \Rightarrow I = a\]
Thus, \[\int\limits_0^{2a} {\dfrac{{f\left( x \right)}}{{f\left( x \right) + f\left( {2a - x} \right)}}} dx = a\].
Option ‘A’ is correct
Note: The integration rule \[\int\limits_0^a {f\left( x \right)dx = } \int\limits_0^a {f\left( {a - x} \right)dx} \] is obtained from another integration rule \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^b {f\left( {a + b - x} \right)dx} \]. So, we can also apply this rule to solve the given integral.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

