
What is the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]?
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{6}\]
C. \[\dfrac{\pi }{{12}}\]
D. \[\dfrac{\pi }{2}\]
Answer
232.8k+ views
Hint: First we will rewrite \[\cot x\] as ratio \[\cos x\] and \[\sin x\]. Then simplify it. After that we will apply the property of definite integral that is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] and add the original integration and the new integration that we get after applying the formula. Simplify the sum and integrate it to get the required answer.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration formula:
\[\int\limits_b^a {dx} = \left[ {a - b} \right]\]
Complete step by step solution:Given definite integral is \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \].
Assume that, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]
Now we replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\cos x}}{{\sin x}}} }}} \]
Simplify the above expression:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} }}}}} \]
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …….(i)
Now applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} }}} \]
Add the like terms:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Now applying the complementary formula of trigonometry:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …….(ii)
Now adding equation (i) and (ii)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \]
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)dx}}{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)}}} \]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \]
\[ \Rightarrow 2I = \left( {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow 2I = \dfrac{\pi }{3}\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{6}\]
Option ‘B’ is correct
Note: Students often make mistake to solve the given question. They apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \] and stuck in the step. First we have replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\] and then apply the definite integral property.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Integration formula:
\[\int\limits_b^a {dx} = \left[ {a - b} \right]\]
Complete step by step solution:Given definite integral is \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \].
Assume that, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \]
Now we replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\cos x}}{{\sin x}}} }}} \]
Simplify the above expression:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\sin x} + \sqrt {\cos x} }}{{\sqrt {\sin x} }}}}} \]
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …….(i)
Now applying the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6} - x} \right)} }}} \]
Add the like terms:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Now applying the complementary formula of trigonometry:
\[ \Rightarrow I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …….(ii)
Now adding equation (i) and (ii)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \]
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)dx}}{{\left( {\sqrt {\sin x} + \sqrt {\cos x} } \right)}}} \]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \]
\[ \Rightarrow 2I = \left( {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right)\]
\[ \Rightarrow 2I = \dfrac{\pi }{3}\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{6}\]
Option ‘B’ is correct
Note: Students often make mistake to solve the given question. They apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\cot x} }}} \] and stuck in the step. First we have replace \[\cot x\] by \[\dfrac{{\cos x}}{{\sin x}}\] and then apply the definite integral property.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

