
What is the value of \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]?
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[{e^{\dfrac{{{\pi ^2}}}{{16}}}}\]
D. \[{e^{\dfrac{{{\pi ^2}}}{4}}}\]
Answer
232.8k+ views
Hint: To solve the given definite integral we will apply the property of the definite integral. As the lower limit of the definite integral is zero, thus we will apply \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]. Then add the integral and simplify to get simplest form the integration and solve it.
Formula Used:Definite integral property:
\[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]
Formula of integration:
\[\int {dx} = x + c\]
Complete step by step solution:Given definite integral is
\[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \] …….(i)
Now applying the property of definite integral \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} + x} \right)}^2}}}}}dx} \]
Now subtracting like term:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \] ….. (ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \]
Rewrite the integration:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Now cancel out like terms:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {1dx} \]
Integrate the right hand side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Now putting lower limit and upper limit
\[ \Rightarrow 2I = \dfrac{\pi }{2} - 0\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistake when they solve a definite integral. They put integrating factor in the step \[2I = \left[ {x + c} \right]_0^{\dfrac{\pi }{2}}\]. But it is incorrect because we don’t need to put integrating constant when we solve definite integral. The correct way is \[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\].
Formula Used:Definite integral property:
\[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]
Formula of integration:
\[\int {dx} = x + c\]
Complete step by step solution:Given definite integral is
\[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \] …….(i)
Now applying the property of definite integral \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2} + x} \right)}^2}}}}}dx} \]
Now subtracting like term:
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \] ….. (ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}} + {e^{{x^2}}}}}dx} \]
Rewrite the integration:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}{{{e^{{x^2}}} + {e^{{{\left( {\dfrac{\pi }{2} - x} \right)}^2}}}}}dx} \]
Now cancel out like terms:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {1dx} \]
Integrate the right hand side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
Now putting lower limit and upper limit
\[ \Rightarrow 2I = \dfrac{\pi }{2} - 0\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistake when they solve a definite integral. They put integrating factor in the step \[2I = \left[ {x + c} \right]_0^{\dfrac{\pi }{2}}\]. But it is incorrect because we don’t need to put integrating constant when we solve definite integral. The correct way is \[2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

