
What is the value of definite integral \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\]?
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{{3\pi }}{4}\]
D. \[\pi \]
Answer
232.8k+ views
Hint: The given integration is a definite integration. We will apply definite integral property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \] to simplify it. Then add the given integration with the new form of the integration and solve it.
Formula Used:Definite integration property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Integration formula:
\[\int {dx} = x + c\]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Complete step by step solution:Given definite integration is \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\].
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\] …..(i)
Now applying the property of definite integration:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}} dx\]
Now applying the complementary formula of trigonometry:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\] …..(ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {dx} \]
Now integrate the right side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow 2I = \left[ {\dfrac{\pi }{2} - 0} \right]\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistakes to solve the definite integration. They divide denominator and numerator by \[{\cos ^{\dfrac{2}{3}}}x\] and use substitution method to solve it. But it is incorrect way. Here we need to apply the property of definite integral and solve it.
Formula Used:Definite integration property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]
Integration formula:
\[\int {dx} = x + c\]
Complementary formula of trigonometry:
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Complete step by step solution:Given definite integration is \[\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\].
Assume that, \[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\] …..(i)
Now applying the property of definite integration:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^{\dfrac{2}{3}}}\left( {\dfrac{\pi }{2} - x} \right)}}} dx\]
Now applying the complementary formula of trigonometry:
\[I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\] …..(ii)
Adding equation (i) and (ii)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx + \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{\dfrac{2}{3}}}x}}{{{{\cos }^{\dfrac{2}{3}}}x + {{\sin }^{\dfrac{2}{3}}}x}}} dx\]
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}{{{{\sin }^{\dfrac{2}{3}}}x + {{\cos }^{\dfrac{2}{3}}}x}}} dx\]
Now cancel out common term from denominator and numerator:
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {dx} \]
Now integrate the right side:
\[ \Rightarrow 2I = \left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow 2I = \left[ {\dfrac{\pi }{2} - 0} \right]\]
Divide both sides by 2:
\[ \Rightarrow I = \dfrac{\pi }{4}\]
Option ‘A’ is correct
Note: Students often make mistakes to solve the definite integration. They divide denominator and numerator by \[{\cos ^{\dfrac{2}{3}}}x\] and use substitution method to solve it. But it is incorrect way. Here we need to apply the property of definite integral and solve it.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

