
Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of the number of red cards. Hence find the mean of the distribution.
Answer
232.8k+ views
Hint: In this question we use the theory of permutation and combination. So, before solving this question you need to first recall the basics of this chapter. For example, if we need to select two cards out of four cards. In this case, this can be done in ${}^{\text{4}}{{\text{C}}_2}$ =6 ways.
Formula used- ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
Three Cards are drawn from a pack of 52 cards.
Let X be the number of red cards drawn.
In a pack of 52 cards there are 26 red cards and 26 black cards.
We can draw 3 cards out of 52 in${}^{52}{{\text{C}}_3}$ ways.
P(X=0) = P(No red cards drawn)
= $\dfrac{{{}^{26}{{\text{C}}_3} \times {}^{26}{{\text{C}}_0}}}{{{}^{52}{{\text{C}}_3}}}$
= $\dfrac{{26 \times 25 \times 24}}{{52 \times 51 \times 50}}$
= $\dfrac{2}{{17}}$
P(X=1) = P(One red card drawn )
= $\dfrac{{{}^{26}{{\text{C}}_1} \times {}^{26}{{\text{C}}_2}}}{{{}^{52}{{\text{C}}_3}}}$
= $\dfrac{{26 \times \dfrac{{26 \times 25}}{{2 \times 1}}}}{{\dfrac{{52 \times 51 \times 50}}{{3 \times 2 \times 1}}}}$
= $\dfrac {{13}}{{34}}$
P(X=2) = P(two red card drawn )
= $\dfrac{{{}^{26}{{\text{C}}_2} \times {}^{26}{{\text{C}}_1}}}{{{}^{52}{{\text{C}}_3}}}$
= \[\dfrac{{\dfrac{{26 \times 25}}{{2 \times 1}} \times \dfrac{{26}}{1}}}{{\dfrac{{52 \times 51 \times 50}}{{3 \times 2 \times 1}}}}\]
= $\dfrac {{13}}{{34}}$
P(X=3) = P(three red card drawn )
= $\dfrac{{{}^{26}{{\text{C}}_3} \times {}^{26}{{\text{C}}_0}}}{{{}^{52}{{\text{C}}_3}}}$
= $\dfrac{{26 \times 25 \times 24}}{{52 \times 51 \times 50}}$
= $\dfrac{2}{{17}}$
Therefore, as we know mean is defined as-
$\sum\limits_0^n {{x_i}.P({x_i})} $= $\sum\limits_0^3 {{x_i}.P({x_i})} $
= ${x_0}.P({x_0})$+ ${x_1}.P({x_1})$+${x_2}.P({x_2})$+${x_3}.P({x_3})$
= $0 \times \dfrac{2}{{17}} + 1 \times \dfrac{{13}}{{34}} + 2 \times \dfrac{{13}}{{34}} + 3 \times \dfrac{2}{{17}}$
= $\dfrac{3}{2}$
= 1.5
Thus, the mean of the distribution is 1.5.
Note: Here we need to keep in mind the difference between terms permutation and combination. A permutation is an act of arranging the objects or numbers so as . Combinations are the way of selecting the objects or numbers from a group of objects or collections, in such a way that the order of the objects does not matter. For example, suppose we've a group of three letters: A, B, and C. Each possible selection would be an example of a mixture .
Formula used- ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
Three Cards are drawn from a pack of 52 cards.
Let X be the number of red cards drawn.
In a pack of 52 cards there are 26 red cards and 26 black cards.
We can draw 3 cards out of 52 in${}^{52}{{\text{C}}_3}$ ways.
P(X=0) = P(No red cards drawn)
= $\dfrac{{{}^{26}{{\text{C}}_3} \times {}^{26}{{\text{C}}_0}}}{{{}^{52}{{\text{C}}_3}}}$
= $\dfrac{{26 \times 25 \times 24}}{{52 \times 51 \times 50}}$
= $\dfrac{2}{{17}}$
P(X=1) = P(One red card drawn )
= $\dfrac{{{}^{26}{{\text{C}}_1} \times {}^{26}{{\text{C}}_2}}}{{{}^{52}{{\text{C}}_3}}}$
= $\dfrac{{26 \times \dfrac{{26 \times 25}}{{2 \times 1}}}}{{\dfrac{{52 \times 51 \times 50}}{{3 \times 2 \times 1}}}}$
= $\dfrac {{13}}{{34}}$
P(X=2) = P(two red card drawn )
= $\dfrac{{{}^{26}{{\text{C}}_2} \times {}^{26}{{\text{C}}_1}}}{{{}^{52}{{\text{C}}_3}}}$
= \[\dfrac{{\dfrac{{26 \times 25}}{{2 \times 1}} \times \dfrac{{26}}{1}}}{{\dfrac{{52 \times 51 \times 50}}{{3 \times 2 \times 1}}}}\]
= $\dfrac {{13}}{{34}}$
P(X=3) = P(three red card drawn )
= $\dfrac{{{}^{26}{{\text{C}}_3} \times {}^{26}{{\text{C}}_0}}}{{{}^{52}{{\text{C}}_3}}}$
= $\dfrac{{26 \times 25 \times 24}}{{52 \times 51 \times 50}}$
= $\dfrac{2}{{17}}$
Therefore, as we know mean is defined as-
$\sum\limits_0^n {{x_i}.P({x_i})} $= $\sum\limits_0^3 {{x_i}.P({x_i})} $
= ${x_0}.P({x_0})$+ ${x_1}.P({x_1})$+${x_2}.P({x_2})$+${x_3}.P({x_3})$
= $0 \times \dfrac{2}{{17}} + 1 \times \dfrac{{13}}{{34}} + 2 \times \dfrac{{13}}{{34}} + 3 \times \dfrac{2}{{17}}$
= $\dfrac{3}{2}$
= 1.5
Thus, the mean of the distribution is 1.5.
Note: Here we need to keep in mind the difference between terms permutation and combination. A permutation is an act of arranging the objects or numbers so as . Combinations are the way of selecting the objects or numbers from a group of objects or collections, in such a way that the order of the objects does not matter. For example, suppose we've a group of three letters: A, B, and C. Each possible selection would be an example of a mixture .
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

