
There are four different letters and four addressed envelopes, in how many ways can the letter be put in the envelopes so at least one letter goes into the correct envelope.
(A). 15
(B). 24
(C). 9
(D). None of these
Answer
218.4k+ views
Hint: In this question it is given that there are four different letters and four addressed envelopes, so we have to find that in how many ways can the letter be put in the envelopes so at least one letter goes into the correct envelope. So since it is given that at least one of it goes to the correct address i.e, there is a possibility that either 2 letters or 3 letters or 4 letters goes to the correct addressed envelopes. So we have to find the ways for each of the cases.
So find the way we need to know the combination formula, that is, if we want to select r number of quantity from n number of quantity then we can select in $${}^{n}C_{r}$$,
Where, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ and
$$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 2\cdot 1$$
Complete step-by-step solution:
Case-1:(1 letter goes to the correct addressed envelope),
So 1 letter can be put in the right envelope from the available 4 envelopes or we can say that among the 4 envelops 1 correct addressed envelope for a letter, can be chosen in $${}^{4}C_{1}$$ ways.
Where,
$${}^{4}C_{1}$$
$$=\dfrac{4!}{1!\cdot \left( 4-1\right) !}$$
$$=\dfrac{4!}{3!} =\dfrac{4\times 3!}{3!} =4$$ ways
Case-2:(2 letters goes to the correct envelopes)
So similarly we can say that 2 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{2}$$ ways
Where,
$${}^{4}C_{2}$$
$$=\dfrac{4!}{2!\cdot \left( 4-2\right) !} $$
$$=\dfrac{4!}{2!\cdot 2!} =\dfrac{4\times 3\times 2!}{2\times 1\times 2!} =6$$ ways.
Case-3:(3 letters goes to the correct envelopes)
So we can say that 3 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{3}$$ ways.
Where,
$${}^{4}C_{3}$$
$$=\dfrac{4!}{3!\cdot \left( 4-3\right) !} $$
$$=\dfrac{4!}{3!\cdot 1!} =\dfrac{4\times 3!}{3!} =4$$ ways.
Case-4:(3 letters goes to the correct envelopes)
In this case also we can say that 4 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{4}$$ ways = 1 ways,
[Since we know that $${}^{n}C_{n}$$ = 1]
Now since each of the cases are independent upon each other then by fundamental principle of addition we can say that the total number of ways that at least one letter goes into the correct envelope = (4+6+4+1) = 15 ways.
Hence the correct option is option A.
Note: In the solution part we have used a principle, which is called fundamental principle of addition or the rule of sum, so in combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have A ways of doing something and B ways of doing another thing and we can not do both at the same time(independent actions), then there are A + B ways to choose one of the actions.
So find the way we need to know the combination formula, that is, if we want to select r number of quantity from n number of quantity then we can select in $${}^{n}C_{r}$$,
Where, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ and
$$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 2\cdot 1$$
Complete step-by-step solution:
Case-1:(1 letter goes to the correct addressed envelope),
So 1 letter can be put in the right envelope from the available 4 envelopes or we can say that among the 4 envelops 1 correct addressed envelope for a letter, can be chosen in $${}^{4}C_{1}$$ ways.
Where,
$${}^{4}C_{1}$$
$$=\dfrac{4!}{1!\cdot \left( 4-1\right) !}$$
$$=\dfrac{4!}{3!} =\dfrac{4\times 3!}{3!} =4$$ ways
Case-2:(2 letters goes to the correct envelopes)
So similarly we can say that 2 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{2}$$ ways
Where,
$${}^{4}C_{2}$$
$$=\dfrac{4!}{2!\cdot \left( 4-2\right) !} $$
$$=\dfrac{4!}{2!\cdot 2!} =\dfrac{4\times 3\times 2!}{2\times 1\times 2!} =6$$ ways.
Case-3:(3 letters goes to the correct envelopes)
So we can say that 3 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{3}$$ ways.
Where,
$${}^{4}C_{3}$$
$$=\dfrac{4!}{3!\cdot \left( 4-3\right) !} $$
$$=\dfrac{4!}{3!\cdot 1!} =\dfrac{4\times 3!}{3!} =4$$ ways.
Case-4:(3 letters goes to the correct envelopes)
In this case also we can say that 4 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{4}$$ ways = 1 ways,
[Since we know that $${}^{n}C_{n}$$ = 1]
Now since each of the cases are independent upon each other then by fundamental principle of addition we can say that the total number of ways that at least one letter goes into the correct envelope = (4+6+4+1) = 15 ways.
Hence the correct option is option A.
Note: In the solution part we have used a principle, which is called fundamental principle of addition or the rule of sum, so in combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have A ways of doing something and B ways of doing another thing and we can not do both at the same time(independent actions), then there are A + B ways to choose one of the actions.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

Understanding Electromagnetic Waves and Their Importance

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

Other Pages
Understanding Elastic Collisions in Two Dimensions

Amortization Calculator – Loan Schedule, EMI & Table

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Difference Between Exothermic and Endothermic Reactions: Key Differences, Examples & Diagrams

Mahaparinirvana Diwas 2025: Significance, History, and Ways to Observe

