
The voltage of an $AC$ supply varies with time (t) as $V = 60\sin 50\pi t.\cos 50\pi t$ . The maximum voltage and frequency are respectively (where $V$ is in volt and $t$ is in second)
(A) $30\,Volt,\,100\,Hz$
(B) $60\,Volt,\,50\,Hz$
(C) $60\,Volt,\,100\,Hz$
(D) $30\,Volt,\,50\,Hz$
Answer
232.8k+ views
Hint Compare the given voltage of the alternating current with the trigonometric formula, the change in the voltage provides the answer for the maximum voltage of the alternating current. Use the formula of the angular velocity of the wave to find the maximum frequency of the alternating current.
Useful formula:
(1) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
(2) The formula of the angular velocity is given by
$\omega = 2\pi f$
Where $\omega $ is the angular velocity and $f$ is the frequency of the alternating current.
Complete step by step answer
It is given that the
Voltage of the alternating current supply, $V = 60\sin 50\pi t.\cos 50\pi t$
Let us apply the formula of the $\sin 2\theta $ in the above voltage,
$\sin 2\left( {50\pi t} \right) = 2\sin 50\pi t.\cos 50\pi t$ ---------(1)
But the given voltage is $V = 60\sin 50\pi t.\cos 50\pi t$ ------(2)
Comparing (1) and (2), all are the same except the constant before the trigonometric parameters. Hence the maximum voltage is obtained by dividing them as $\dfrac{{60}}{2} = 30\,V$ .
Hence the maximum voltage of the given voltage of the alternating current is obtained as $30\,V$ .
Let us use the formula of the angular velocity,
$\omega = 2\pi f$
Rearranging the above formula in order to find the frequency.
$f = \dfrac{\omega }{{2\pi }}$
Substituting the $\omega = 100\pi $ in the above formula, we get
$f = \dfrac{{100\pi }}{{2\pi }}$
By simplifying the above step, we get
$f = 50\pi $
Hence the maximum frequency of the alternating current of the given voltage is $50\pi $ .
Thus the option (D) is correct.
Note: The frequency will be maximum only when the angular velocity of the given wave will be maximum. The angular velocity will be maximum at twice the theta of the voltage. Hence the angular velocity is obtained by $2 \times 50\pi $ , which is equal to $100\pi $ .
Useful formula:
(1) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
(2) The formula of the angular velocity is given by
$\omega = 2\pi f$
Where $\omega $ is the angular velocity and $f$ is the frequency of the alternating current.
Complete step by step answer
It is given that the
Voltage of the alternating current supply, $V = 60\sin 50\pi t.\cos 50\pi t$
Let us apply the formula of the $\sin 2\theta $ in the above voltage,
$\sin 2\left( {50\pi t} \right) = 2\sin 50\pi t.\cos 50\pi t$ ---------(1)
But the given voltage is $V = 60\sin 50\pi t.\cos 50\pi t$ ------(2)
Comparing (1) and (2), all are the same except the constant before the trigonometric parameters. Hence the maximum voltage is obtained by dividing them as $\dfrac{{60}}{2} = 30\,V$ .
Hence the maximum voltage of the given voltage of the alternating current is obtained as $30\,V$ .
Let us use the formula of the angular velocity,
$\omega = 2\pi f$
Rearranging the above formula in order to find the frequency.
$f = \dfrac{\omega }{{2\pi }}$
Substituting the $\omega = 100\pi $ in the above formula, we get
$f = \dfrac{{100\pi }}{{2\pi }}$
By simplifying the above step, we get
$f = 50\pi $
Hence the maximum frequency of the alternating current of the given voltage is $50\pi $ .
Thus the option (D) is correct.
Note: The frequency will be maximum only when the angular velocity of the given wave will be maximum. The angular velocity will be maximum at twice the theta of the voltage. Hence the angular velocity is obtained by $2 \times 50\pi $ , which is equal to $100\pi $ .
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

