
The vertex of a parabola is the point $\left( a,b \right)$ and the latus rectum is of length \[l\]. If the axis of the parabola is along the positive direction of $y-$axis, then its equation is
(a) \[{{\left( x-a \right)}^{2}}=\dfrac{l}{2}\left( y-2b \right)\]
(b) \[{{\left( x-a \right)}^{2}}=\dfrac{l}{2}\left( y-b \right)\]
(c) \[{{\left( x-a \right)}^{2}}=l\left( y-b \right)\]
(d) None of these
Answer
233.4k+ views
Hint: The form of the parabola to be used in the questions is \[{{\left( x-{{x}_{1}} \right)}^{2}}=4a\left( y-{{y}_{1}} \right)\].
Complete step-by-step answer:
The vertex and the latus rectum of a parabola are given as $\left( a,b \right)$ and \[l\] respectively in the question.
Since the axis of the parabola is along the positive direction of the $y-$axis, we can figure out that the form of the required parabola would be \[{{x}^{2}}=4ay\]. Latus rectum is indicated by LR and the given point of the vertex is termed as A. We can represent the details as shown in the figure below.

The vertex, A is $\left( a,b \right)$, so we can write the equation for the parabola as,
\[{{\left( x-a \right)}^{2}}=4c\left( y-b \right)\ldots \ldots \ldots (i)\]
Since the coordinate of the vertex is \[a\], the term $c$ has been used in the equation above.
From the figure, we can see that the latus rectum is perpendicular to the axis of the parabola and is represented in the figure as LR. We know that the length of the latus rectum for the form of parabola, \[{{x}^{2}}=4ay\] is \[4c\]. Also, it is already given to us in the question as \[l\].
Therefore, we can relate the data and we can write the term \[4c=l\].
After substituting this relation in equation \[(i)\], we get the equation of the parabola as,
\[{{\left( x-a \right)}^{2}}=l\left( y-b \right)\]
Hence, option (c) is obtained as the correct answer.
Note: The best way to approach this question is to figure out the form of the required equation. Looking at the options, the form of the parabola can be obtained easily. One way to figure out the answer would be to check the latus rectum. Since the length of the latus rectum is available from the question, the answer can be computed easily in less time.
Complete step-by-step answer:
The vertex and the latus rectum of a parabola are given as $\left( a,b \right)$ and \[l\] respectively in the question.
Since the axis of the parabola is along the positive direction of the $y-$axis, we can figure out that the form of the required parabola would be \[{{x}^{2}}=4ay\]. Latus rectum is indicated by LR and the given point of the vertex is termed as A. We can represent the details as shown in the figure below.

The vertex, A is $\left( a,b \right)$, so we can write the equation for the parabola as,
\[{{\left( x-a \right)}^{2}}=4c\left( y-b \right)\ldots \ldots \ldots (i)\]
Since the coordinate of the vertex is \[a\], the term $c$ has been used in the equation above.
From the figure, we can see that the latus rectum is perpendicular to the axis of the parabola and is represented in the figure as LR. We know that the length of the latus rectum for the form of parabola, \[{{x}^{2}}=4ay\] is \[4c\]. Also, it is already given to us in the question as \[l\].
Therefore, we can relate the data and we can write the term \[4c=l\].
After substituting this relation in equation \[(i)\], we get the equation of the parabola as,
\[{{\left( x-a \right)}^{2}}=l\left( y-b \right)\]
Hence, option (c) is obtained as the correct answer.
Note: The best way to approach this question is to figure out the form of the required equation. Looking at the options, the form of the parabola can be obtained easily. One way to figure out the answer would be to check the latus rectum. Since the length of the latus rectum is available from the question, the answer can be computed easily in less time.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

