
The value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is
A. \[1\]
B. \[0\]
C. \[ - 1\]
D. None of these
Answer
233.1k+ views
Hint: We are given an equation \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \]
Now we write it in terms of exponential, then equate it to some variable and find the product, then we solve the series using G.P. In simplification, we will get our result.
Formula used:
We have been using the following formula:
1. \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
2. \[{S_n} = \dfrac{a}{{1 - r}}\]
3. \[\cos \pi = - 1\]
4. \[\sin \pi = 0\]
5. \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
Complete step-by-step solution:
We are given that \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty - - - (1)\]
Now we rewrite the given equation as:
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^2}}}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^3}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^3}}}} \right)...\infty - - - \left( 2 \right) \\ \]
Now we know the exponential formula \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
Therefore, we can write equation (2) as:
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty \]
Now, we will simplify the exponent powers using \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
\[{e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}}\]
Now we know that a given series is an infinite G.P series because each succeeding term is produced by multiplying each preceding term by a fixed number in which the first term is \[{e^{i\,\,\dfrac{\pi }{2}}}\] and the common difference is \[{e^{i\,\,\dfrac{\pi }{2}}}\]
Now, we apply the formula of the sum of series which is \[{S_n} = \dfrac{a}{{1 - r}}\]
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{1 - \dfrac{1}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{{2 - 1}}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)}} \\
\]
Further Solving,
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\pi }}\]
Further solving we get,
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = \,\cos \pi + i\sin \pi \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 + 0i \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 \\
\]
Therefore, the value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is \[ - 1\].
Hence, option (C) is correct answer
Note: Students become confused when solving equations and wonder which equation to enter. Converting equations having exponential values to equations including sine and cosine values can be problematic.
Now we write it in terms of exponential, then equate it to some variable and find the product, then we solve the series using G.P. In simplification, we will get our result.
Formula used:
We have been using the following formula:
1. \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
2. \[{S_n} = \dfrac{a}{{1 - r}}\]
3. \[\cos \pi = - 1\]
4. \[\sin \pi = 0\]
5. \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
Complete step-by-step solution:
We are given that \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty - - - (1)\]
Now we rewrite the given equation as:
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^2}}}} \right)\left( {\cos \dfrac{\pi }{{{{\left( 2 \right)}^3}}} + i\sin \dfrac{\pi }{{{{\left( 2 \right)}^3}}}} \right)...\infty - - - \left( 2 \right) \\ \]
Now we know the exponential formula \[{e^{ix}} = \cos x + i\sin x\,\,\,\]
Therefore, we can write equation (2) as:
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty \]
Now, we will simplify the exponent powers using \[{a^m}{a^n}{a^p} = {a^{m + n + p}}\]
\[{e^{i\,\dfrac{\pi }{2}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}}}} \cdot {e^{\,i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}}}...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}}\]
Now we know that a given series is an infinite G.P series because each succeeding term is produced by multiplying each preceding term by a fixed number in which the first term is \[{e^{i\,\,\dfrac{\pi }{2}}}\] and the common difference is \[{e^{i\,\,\dfrac{\pi }{2}}}\]
Now, we apply the formula of the sum of series which is \[{S_n} = \dfrac{a}{{1 - r}}\]
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{\left( {i\,\dfrac{\pi }{2} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^2}}} + i\,\dfrac{\pi }{{{{\left( 2 \right)}^3}}}...\infty } \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{1 - \dfrac{1}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{{2 - 1}}{2}}}} \right)}} \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\dfrac{\pi }{2}\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)}} \\
\]
Further Solving,
\[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = {e^{i\,\pi }}\]
Further solving we get,
\[
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = \,\cos \pi + i\sin \pi \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 + 0i \\
\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty = - 1 \\
\]
Therefore, the value of \[\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right)...\infty \] is \[ - 1\].
Hence, option (C) is correct answer
Note: Students become confused when solving equations and wonder which equation to enter. Converting equations having exponential values to equations including sine and cosine values can be problematic.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

