
The value of $\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$ is
A. $\dfrac{\pi }{3}$
B. $\dfrac{\pi }{2}$
C. $\dfrac{1}{2}$
D. $\dfrac{\pi }{4}$
Answer
232.8k+ views
Hint: In this question, we are to find the given integral. For this, the variable substitution method is applied in the given integral. So, that the required integral will be obtained.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$
Substituting $x=\sin \theta $
Then, $\theta ={{\sin }^{-1}}x$ and $dx=\cos \theta d\theta $
If $x=0$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(0)=0$
If $x=1$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(1)=\dfrac{\pi }{2}$
Then, the given integral become
$\begin{align}
& I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta d\theta }{\sin \theta +\sqrt{1-{{\sin }^{2}}\theta }}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta \\
\end{align}$
Since the obtained integral is in the form of \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx}\], we can write
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}==\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta =\dfrac{\pi }{4}$
Option ‘D’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral. This integral can also be solved by using the property $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$. Since we know that $\sin (\dfrac{\pi }{2}-x)=\cos x$, we get $2I=\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta }=\dfrac{\pi }{2}\Rightarrow I=\dfrac{\pi }{4}$. In this way, we can calculate the given integral. In any case, we need to remember that the interval of the integral must be in the form of $[0, a]$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$
Substituting $x=\sin \theta $
Then, $\theta ={{\sin }^{-1}}x$ and $dx=\cos \theta d\theta $
If $x=0$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(0)=0$
If $x=1$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(1)=\dfrac{\pi }{2}$
Then, the given integral become
$\begin{align}
& I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta d\theta }{\sin \theta +\sqrt{1-{{\sin }^{2}}\theta }}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta \\
\end{align}$
Since the obtained integral is in the form of \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx}\], we can write
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}==\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta =\dfrac{\pi }{4}$
Option ‘D’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral. This integral can also be solved by using the property $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$. Since we know that $\sin (\dfrac{\pi }{2}-x)=\cos x$, we get $2I=\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta }=\dfrac{\pi }{2}\Rightarrow I=\dfrac{\pi }{4}$. In this way, we can calculate the given integral. In any case, we need to remember that the interval of the integral must be in the form of $[0, a]$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

